Alzheimer's disease (AD) is a growing global crisis. Egocentric spatial orientation deteriorates with age and more significantly with AD. A simple and quick virtual reality (VR) localization and target finding technique is presented as a diagnostic aid to screen mild cognitive impairment (MCI) from AD.
View Article and Find Full Text PDFWe evaluated the outcomes of an intervention using a serious game designed to be played on iPads for improving spatial reorientation by training users to integrate geometry of the environment, instead of relying solely on featural cues. Using data logged online through a clinical study of using this game, the effect of training among 16 older adults (69.3 ± 6.
View Article and Find Full Text PDFDaily life requires accurate navigation, and thus better understanding of aging on navigational abilities is critical. Importantly, the use of spatial properties by older and younger adults remains unclear. During this study, younger and older human adults were presented with a virtual environment in which they had to navigate a series of hallways.
View Article and Find Full Text PDFAdult participants learned to reorient to a specific corner inside either a real or virtual rectangular room containing a distinct featural object in each corner. Participants in the virtual-reality (VR) condition experienced an immersive virtual version of the physical room using a head-mounted display (HMD) and customized manual wheelchair to provide self-movement. Following a disorientation procedure, people could reorient by using either the geometry of the room and/or the distinct features in the corners.
View Article and Find Full Text PDFMuscle contraction results from attachment-detachment cycles between myosin heads extending from myosin filaments and actin filaments. It is generally believed that a myosin head first attaches to actin, undergoes conformational changes to produce force and motion in muscle, and then detaches from actin. Despite extensive studies, the molecular mechanism of myosin head conformational changes still remains to be a matter for debate and speculation.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
September 2013
A high performance device for measuring force and length change during myofibril contraction is fabricated. The principle of a device depends on the law of electromagnetic induction. Homogenized myofibrils were attached between two wires exposed in the uniform magnetic field by silicon adhesive under an inverted microscope.
View Article and Find Full Text PDF