Publications by authors named "Kazushi Toyoda"

We demonstrate a marked performance improvement in a 512 QAM transmission by employing frequency-domain equalization (FDE) instead of an FIR filter. FDE enables us to compensate for distortions due to hardware imperfections in the transmitter with higher precision, which successfully reduced the power penalty by 4 dB in a 54 Gbit/s (3 Gsymbol/s)-160 km transmission. FDE also allows the transmission distance to be extended up to 240 km.

View Article and Find Full Text PDF

We demonstrate substantial performance improvements in 256 QAM transmission in terms of both data rate and distance that we realized by using a digital back-propagation (DBP) method. 160 Gbit/s-160 km and 64 Gbit/s-560 km transmissions were successfully achieved with a polarization-multiplexed 256 QAM signal, in which the symbol rate and transmission distance were greatly increased by compensating for the interplay between dispersion and nonlinearity, which is responsible for the transmission impairment especially for a higher symbol rate and longer distance.

View Article and Find Full Text PDF

We demonstrate a record QAM multiplicity of 1024 levels in a single-carrier coherent transmission. A frequency-domain equalization technique and a back-propagation method are adopted to compensate for distortions caused by hardware imperfections and fiber impairments, respectively. As a result, 60 Gbit/s polarization-multiplexed transmission over 150-km has been achieved at 3 Gsymbol/s within an optical bandwidth of only 4.

View Article and Find Full Text PDF