Publications by authors named "Kazuo Sutoh"

Article Synopsis
  • Reverse gyrase is an enzyme that introduces positive supercoils into DNA using energy from ATP, typically functioning at high temperatures in hyperthermophiles.
  • Previous research identified mismatched base pairs in DNA as effective sites for reverse gyrase activity, allowing it to operate at lower temperatures (down to 50°C).
  • This study shows that multiple reverse gyrase molecules can work together to overwind DNA, with findings indicating that the activity is additive up to a certain limit influenced by hydrodynamic friction, particularly at higher temperatures where DNA torsional stress plays a critical role.
View Article and Find Full Text PDF

Cytoplasmic dynein is a dimeric AAA(+) motor protein that performs critical roles in eukaryotic cells by moving along microtubules using ATP. Here using cryo-electron microscopy we directly observe the structure of Dictyostelium discoideum dynein dimers on microtubules at near-physiological ATP concentrations. They display remarkable flexibility at a hinge close to the microtubule binding domain (the stalkhead) producing a wide range of head positions.

View Article and Find Full Text PDF

Reverse gyrase, found in hyperthermophiles, is the only enzyme known to overwind (introduce positive supercoils into) DNA. The ATP-dependent activity, detected at >70 °C, has so far been studied solely by gel electrophoresis; thus, the reaction dynamics remain obscure. Here, we image the overwinding reaction at 71 °C under a microscope, using DNA containing consecutive 30 mismatched base pairs that serve as a well-defined substrate site.

View Article and Find Full Text PDF

Dynein is a motor protein that moves on microtubules (MTs) using the energy of adenosine triphosphate (ATP) hydrolysis. To understand its motility mechanism, it is crucial to know how the signal of MT binding is transmitted to the ATPase domain to enhance ATP hydrolysis. However, the molecular basis of signal transmission at the dynein-MT interface remains unclear.

View Article and Find Full Text PDF

F1-ATPase is a powerful rotary molecular motor that can rotate an object several hundred times as large as the motor itself against the viscous friction of water. Forced reverse rotation has been shown to lead to ATP synthesis, implying that the mechanical work against the motor's high torque can be converted into the chemical energy of ATP. The minimal composition of the motor protein is α3β3γ subunits, where the central rotor subunit γ turns inside a stator cylinder made of alternately arranged α3β3 subunits using the energy derived from ATP hydrolysis.

View Article and Find Full Text PDF

Fuelled by ATP hydrolysis, dyneins generate force and movement on microtubules in a wealth of biological processes, including ciliary beating, cell division and intracellular transport. The large mass and complexity of dynein motors have made elucidating their mechanisms a sizable task. Yet, through a combination of approaches, including X-ray crystallography, cryo-electron microscopy, single-molecule assays and biochemical experiments, important progress has been made towards understanding how these giant motor proteins work.

View Article and Find Full Text PDF

Dynein ATPases are the largest known cytoskeletal motors and perform critical functions in cells: carrying cargo along microtubules in the cytoplasm and powering flagellar beating. Dyneins are members of the AAA+ superfamily of ring-shaped enzymes, but how they harness this architecture to produce movement is poorly understood. Here, we have used cryo-EM to determine 3D maps of native flagellar dynein-c and a cytoplasmic dynein motor domain in different nucleotide states.

View Article and Find Full Text PDF

Dyneins are microtubule-based AAA(+) motor complexes that power ciliary beating, cell division, cell migration and intracellular transport. Here we report the most complete structure obtained so far, to our knowledge, of the 380-kDa motor domain of Dictyostelium discoideum cytoplasmic dynein at 2.8 Å resolution; the data are reliable enough to discuss the structure and mechanism at the level of individual amino acid residues.

View Article and Find Full Text PDF

Dyneins are large microtubule-based motors that power a wide variety of cellular processes. Here we report a 4.5-Å X-ray crystallographic analysis of the entire functional motor domain of cytoplasmic dynein with ADP from Dictyostelium discoideum, which has revealed the detailed architecture of the functional units required for motor activity, including the ATP-hydrolyzing ring, the long coiled-coil microtubule-binding stalk and the force-generating rod-like linker.

View Article and Find Full Text PDF

We examined the functional roles of C-sequence, a 47-kDa non-AAA+ module at the C-terminal end of the 380-kDa Dictyostelium dynein motor domain. When the distal segment of the C-sequence was deleted from the motor domain, the single-molecule processivity of the dimerized motor domain was selectively impaired without its ensemble motile ability and ATPase activity being severely affected. When the hinge-like sequence between the distal and proximal C-sequence segments was made more or less flexible, the dimeric motor showed lower or higher processivity, respectively.

View Article and Find Full Text PDF

We aimed to create an autonomous on-chip system that performs targeted delivery of lipid vesicles (liposomes) as nano- or microscale reactors using machinery from biological systems. Reactor-liposomes would be ideal model cargoes to realize biomolecular-motor-based biochemical analysis chips; however, there are no existing systems that enable targeted delivery of cargo-liposomes in an autonomous manner. By exploiting biomolecular-motor-based motility and DNA hybridization, we demonstrate that single-stranded DNA (ssDNA)-labeled microtubules (MTs), gliding on kinesin-coated surfaces, acted as cargo transporters and that ssDNA-labeled cargo-liposomes were loaded/unloaded onto/from gliding MTs without bursting at loading reservoirs/micropatterned unloading sites specified by DNA base sequences.

View Article and Find Full Text PDF

We aimed to create autonomous on-chip systems that perform targeted translocations of nano- or microscale particles in parallel using machinery that mimics biological systems. By exploiting biomolecular-motor-based motility and DNA hybridization, we demonstrate that single-stranded DNA-labeled microtubules gliding on kinesin-coated surfaces acted as cargo translocators and that single-stranded DNA-labeled cargoes were loaded/unloaded onto/from gliding microtubules at micropatterned loading/unloading sites specified by DNA base sequences. Our results will help to create autonomous molecular sorters and sensors.

View Article and Find Full Text PDF

Dynein ATPases power diverse microtubule-based motilities. Each dynein motor domain comprises a ring-like head containing six AAA+ modules and N- and C-terminal regions, together with a stalk that binds microtubules. How these subdomains are arranged and generate force remains poorly understood.

View Article and Find Full Text PDF

Coupling between ATPase and track binding sites is essential for molecular motors to move along cytoskeletal tracks. In dynein, these sites are separated by a long coiled coil stalk that must mediate communication between them, but the underlying mechanism remains unclear. Here we show that changes in registration between the two helices of the coiled coil can perform this function.

View Article and Find Full Text PDF

Dyneins are microtubule-based motor complexes that power a wide variety of motile processes within eukaryotic cells, including the beating of cilia and flagella and intracellular trafficking along microtubules. Mechanistic studies on dynein have been hampered by their enormous size (molecular masses of 0.5-3MDa) and molecular complexity.

View Article and Find Full Text PDF

Myosin VI is involved in a wide range of endocytic and exocytic membrane trafficking pathways; clathrin-mediated endocytosis, intracellular transport of clathrin-coated and -uncoated vesicles, AP-1B-dependent basolateral sorting in polarized epithelial cells and secretion from the Golgi complex to the cell surface. In this study, using a yeast two-hybrid screen, we identified brain-enriched kinase/lemur tyrosine kinase 2 (BREK/LMTK2), a transmembrane serine/threonine kinase with previously unknown cellular functions, as a myosin VI-interacting protein. Several binding experiments confirmed the interaction of myosin VI with BREK in vivo and in vitro.

View Article and Find Full Text PDF

Dynein is an AAA+ (ATPase associated with various cellular activities)-type motor complex that utilizes ATP hydrolysis to actively drive microtubule sliding. The dynein heavy chain (molecular mass >500 kDa) contains six tandemly linked AAA+ modules and exhibits full motor activities. Detailed molecular dissection of this motor with unique architecture was hampered by the lack of an expression system for the recombinant heavy chain, as a result of its large size.

View Article and Find Full Text PDF

Cytoplasmic dynein is a large, microtubule-dependent molecular motor (1.2 MDa). Although the structure of dynein by itself has been characterized, its conformation in complex with microtubules is still unknown.

View Article and Find Full Text PDF

The dynein motor domain is composed of a tail, head, and stalk and is thought to generate a force to microtubules by swinging the tail against the head during its ATPase cycle. For this "power stroke," dynein has to coordinate the tail swing with microtubule association/dissociation at the tip of the stalk. Although a detailed picture of the former process is emerging, the latter process remains to be elucidated.

View Article and Find Full Text PDF

According to the power stroke model of dynein deduced from electron microscopic and fluorescence resonance energy transfer studies, the power stroke and the recovery stroke are expected to take place at the two isomerization steps of the ATPase cycle at the primary ATPase site. Here, we have conducted presteady-state kinetic analyses of these two isomerization steps with the single-headed motor domain of Dictyostelium cytoplasmic dynein by employing fluorescence resonance energy transfer to probe ATPase steps at the primary site and tail positions. Our results show that the recovery stroke at the first isomerization step proceeds quickly ( approximately 180 s(-1)), whereas the power stroke at the second isomerization step is very slow ( approximately 0.

View Article and Find Full Text PDF

MYO18B is a class XVIII myosin, cloned as a tumor suppressor gene candidate. To investigate the mechanisms of MYO18B-dependent tumor suppression, MYO18B-interacting proteins were searched for by a yeast two-hybrid screen. HOMER2, a Homer/Ves1 family protein, was identified as a binding partner of MYO18B.

View Article and Find Full Text PDF

Dynein is a huge multisubunit microtubule (MT)-based motor, whose motor domain resides in the heavy chain. The heavy chain comprises a ring of six AAA (ATPases associated with diverse cellular activities) modules with two slender protruding domains, the tail and stalk. It has been proposed that during the ATP hydrolysis cycle, this tail domain swings against the AAA ring as a lever arm to generate the power stroke.

View Article and Find Full Text PDF

All class 2 myosins contain an N-terminal extension of approximately 80 residues that includes an Src homology 3 (SH3)-like subdomain. To explore the functional importance of this region, which is also present in most other myosin classes, we generated truncated constructs of Dictyostelium discoideum myosin-2. Truncation at position 80 resulted in the complete loss of myosin-2 function in vivo.

View Article and Find Full Text PDF