Auxin biosynthesis involves two types of enzymes: the Trp aminotransferases (TAA/TARs) and the flavin monooxygenases (YUCCAs). This two-step pathway is highly conserved throughout the plant kingdom and is essential for almost all of the major developmental processes. Despite their importance, it is unclear how these enzymes are regulated and how their activities are coordinated.
View Article and Find Full Text PDFp-Phenoxyphenyl boronic acid (PPBo) is a specific inhibitor of auxin biosynthesis in Arabidopsis. We examined the inhibitory activity of PPBo in rice. The activity of OsYUCCA, a key enzyme for auxin biosynthesis, was inhibited by PPBo in vitro.
View Article and Find Full Text PDFMethods Mol Biol
March 2021
Auxin plays important roles in almost all aspects of plant growth and development. Chemical genetics is an effective approach to understand auxin action, especially in nonmodel plant species, in which auxin-related mutants are not yet available. Among auxin-related chemical tools, we present approaches to utilize auxin biosynthesis inhibitors.
View Article and Find Full Text PDFMelting-flesh peaches produce large amounts of ethylene, resulting in rapid fruit softening at the late-ripening stage. In contrast, stony hard peaches do not soften and produce little ethylene. The indole-3-acetic acid (IAA) level in stony hard peaches is low at the late-ripening stage, resulting in low ethylene production and inhibition of fruit softening.
View Article and Find Full Text PDFBiosci Biotechnol Biochem
July 2017
We previously reported that exogenous application of auxin to Arabidopsis seedlings resulted in downregulation of indole-3-acetic acid (IAA) biosynthesis genes in a feedback manner. In this study, we investigated the involvement of the SCF-mediated signaling pathway in feedback regulation of the indole-3-pyruvic acid-mediated auxin biosynthesis pathway in Arabidopsis. Application of PEO-IAA, an inhibitor of the IAA signal transduction pathway, to wild-type seedlings resulted in increased endogenous IAA levels in roots.
View Article and Find Full Text PDFIAA, a major form of auxin, is biosynthesized from l-tryptophan via the indole-3-pyruvic acid (IPyA) pathway in Arabidopsis. Tryptophan aminotransferases (TAA1/TARs) catalyze the first step from l-tryptophan to IPyA. In rice, the importance of TAA/TARs or YUC homologs in auxin biosynthesis has been suggested, but the enzymatic activities and involvement of the intermediate IPyA in auxin biosynthesis remain elusive.
View Article and Find Full Text PDFWe previously reported l-α-aminooxy-phenylpropionic acid (AOPP) to be an inhibitor of auxin biosynthesis, but its precise molecular target was not identified. In this study we found that AOPP targets TRYPTOPHAN AMINOTRANSFERASE of ARABIDOPSIS 1 (TAA1). We then synthesized 14 novel compounds derived from AOPP to study the structure-activity relationships of TAA1 inhibitors in vitro.
View Article and Find Full Text PDFAuxin is essential for plant growth and development, this makes it difficult to study the biological function of auxin using auxin-deficient mutants. Chemical genetics have the potential to overcome this difficulty by temporally reducing the auxin function using inhibitors. Recently, the indole-3-pyruvate (IPyA) pathway was suggested to be a major biosynthesis pathway in Arabidopsis thaliana L.
View Article and Find Full Text PDFThe IPyA pathway, the major auxin biosynthesis pathway, is transcriptionally regulated through a negative feedback mechanism in response to active auxin levels. The phytohormone auxin plays an important role in plant growth and development, and levels of active free auxin are determined by biosynthesis, conjugation, and polar transport. Unlike conjugation and polar transport, little is known regarding the regulatory mechanism of auxin biosynthesis.
View Article and Find Full Text PDFPreviously we identified indole-3-acetic acid (IAA) biosynthesis inhibitors that act on the conversion of l-tryptophan to indole-3-pyruvic acid in the IAA biosynthesis of Arabidopsis. In the present study, we synthesized a new compound, indole-3-oxoethylphosphonic acid (IOEP), and found that IOEP had an inhibitory effect on IAA biosynthesis in Arabidopsis. The results suggest that IOEP is a novel inhibitor of auxin biosynthesis in Arabidopsis.
View Article and Find Full Text PDFTo develop a growth inhibitor, the effects of auxin inhibitors were investigated. Application of 30 μM L-α-aminooxy-β-phenylpropionic acid (AOPP) or (S)-methyl 2-((1,3-dioxoisoindolin-2-yl)oxy)-3-phenylpropanoate (KOK1101), decreased the endogenous IAA levels in tomato seedlings at 8 days after sowing. Then, 10-1200 μM AOPP or KOK1101 were sprayed on the leaves and stem of 2-3 leaf stage tomato plants grown under a range of environmental conditions.
View Article and Find Full Text PDFBackground: Wood cell walls are rich in cellulose, hemicellulose and lignin. Hence, they are important sources of renewable biomass for producing energy and green chemicals. However, extracting desired constituents from wood efficiently poses significant challenges because these polymers are highly cross-linked in cell walls and are not easily accessible to enzymes and chemicals.
View Article and Find Full Text PDFBiosci Biotechnol Biochem
March 2011
Previously we identified aminooxy compounds as auxin biosynthesis inhibitors. One of the compounds, aminooxyacetic acid (AOA) inhibited indole-3-acetic acid (IAA) biosynthesis in rice and tomato. Here, we found that AOA induced auxin over-accumulation in Arabidopsis.
View Article and Find Full Text PDFDespite its importance in plant growth and development, the auxin biosynthetic pathway has remained elusive. In this study, we analyzed hormone series transcriptome data from AtGenExpress in Arabidopsis and found that aminoethoxyvinylglycine (AVG) had the strongest anti-auxin activity. We also identified other effective compounds such as L-amino-oxyphenylpropionic acid (AOPP) through additional screening.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2005
Steroid hormones are essential for development, and the precise control of their homeostasis is a prerequisite for normal growth. UDP-glycosyltransferases (UGTs) are considered to play an important regulatory role in the activity of steroids in mammals and insects. This study provides an indication that a UGT accepting plant steroids as substrates functions in brassinosteroid (BR) homeostasis.
View Article and Find Full Text PDF