Background: Chloroethylnitrosourea (CENU) derivatives, such as nimustine (ACNU) and carmustine (BCNU), are employed in brain tumor chemotherapy due to their ability to cross the blood-brain barrier. They are thought to suppress tumor development through DNA chloroethylation, followed by the formation of interstrand cross-links (ICLs) that efficiently block replication and transcription. However, the alkylation of DNA and ICLs may trigger genotoxicity, leading to tumor formation as a side effect of the chemotherapeutic treatment.
View Article and Find Full Text PDFMutat Res Genet Toxicol Environ Mutagen
March 2017
Alkylating agents are known to induce the formation of O-alkylguanine (O-alkG) and O-alkylthymine (O-alkT) in DNA. These lesions have been widely investigated as major sources of mutations. We previously showed that mismatch repair (MMR) facilitates the suppression of GC-to-AT mutations caused by O-methylguanine more efficiently than the suppression of GC-to-AT mutations caused by O-ethylguanine.
View Article and Find Full Text PDFDNA alkylation damage can be repaired by nucleotide excision repair (NER), base excision repair (BER) or by direct removal of alkyl groups from modified bases by O(6)-alkylguanine DNA alkyltransferase (AGT; E.C. 2.
View Article and Find Full Text PDFBisulfite modification is a principal tool for analyzing DNA methylation, the methyl substitution at position 5 of cytosine residues. Hypermethylation is known to cause silencing of genes, which may result in cell function failures. DNA methylation analysis is therefore a focus of attention in various fields of biological sciences, including even clinical practices for treatment of cancer patients.
View Article and Find Full Text PDFWe have analysed the influence of neighbouring base sequences on the mutagenesis induced by 7,8-dihydro-8-oxoguanine (8-oxoG or G(o)), a typical oxidative lesion of DNA, using the yeast oligonucleotide transformation technique. Two oligonucleotides, oligo-CCG(o) and oligo-CGG(o), each possessing a single 8-oxoG residue and represented by the sequences 5'-CCG(o)-3' and 5'-CGG(o)-3', respectively, were introduced into a chromosome of Saccharomyces cerevisiae and their mutagenic potentials were compared. In a wild-type strain, 8-oxoG showed very weak mutagenic potential in both cases.
View Article and Find Full Text PDFBisulfite is known to deaminate cytosine in nucleic acids, while 5-methylcytosine resists this bisulfite action. For this reason, bisulfite treatment has been used for detecting 5-methylcytosine in DNA, a minor component of eukaryotic DNA, presently recognized as playing an important role in the control of gene function. This procedure, called bisulfite genomic sequencing, is a principal method for the analysis of DNA methylation in various biological phenomena, including human diseases such as cancer.
View Article and Find Full Text PDFThe MutS-based mismatch repair (MMR) system has been conserved from prokaryotes to humans, and plays important roles in maintaining the high fidelity of genomic DNA. MutS protein recognizes several different types of modified base pairs, including methylated guanine-containing base pairs. Here, we looked at the relationship between recognition and the effects of methylating versus ethylating agents on mutagenesis, using a MutS-deficient strain of E.
View Article and Find Full Text PDFOne of the possible mechanisms of antiviral action of ribavirin (1-beta- d-ribofuranosyl-1,2,4-triazole-3-carboxamide, 1) is the accumulation of mutations in viral genomic RNA. The ambiguous incorporation of 5'-triphosphate of ribavirin (RTP, 8) by a viral RNA-dependent RNA polymerase (RdRp) is a key step of the mutation induction. We synthesized three ribavirin analogues that possess hydrophobic groups, 4-iodo-1-beta- d-ribofuranosylpyrazole-3-carboxamide ( 7a), 4-propynyl-1-beta- d-ribofuranosylpyrazole-3-carboxamide ( 7b), and 4-phenylethynyl-1-beta-D-ribofuranosylpyrazole-3-carboxamide ( 7c), and the corresponding triphosphates ( 9a, 9b, and 9c, respectively).
View Article and Find Full Text PDFNucleic Acids Symp Ser (Oxf)
April 2008
We developed a method for the analyzing mutagenic potential of DNA damage based on the oligonucleotide transformation technique in yeast. Using this assay we have analyzed mutagenic specificities of various DNA lesions. In the present study, we analyzed the mutagenic properties of 2-hydroxyadenine and 5-hydroxycytosine in yeast.
View Article and Find Full Text PDF7,8-Dihydro-8-oxoguanine (8-oxoG) is a well-known oxidative lesion in DNA and is related to carcinogenesis and ageing processes. Misincorporation of dATP opposite to 8-oxoG leads to G --> T transversion mutations. DNA sequence has been proved as an important factor influencing the replication and enzymatic repair of various types of damages.
View Article and Find Full Text PDFNucleic Acids Symp Ser (Oxf)
April 2008
Methylation at position 5 of cytosine in DNA plays a major role in epigenetic gene control. The methylation analysis can be performed by bisulfite genomic sequencing. Conventional procedures in this analysis include a treatment of single stranded DNA with 3-5 M sodium bisulfite at pH 5 and at 50-55 degrees for 4-20 hr.
View Article and Find Full Text PDFMethylation of cytosine in DNA at position 5 plays important roles in gene functions. Changes in the methylation status are linked to cancer. These studies have been developed on the basis of determining 5-methylcytosine residues [mC] in DNA.
View Article and Find Full Text PDFPyrimidine analogues, N4-hydroxycytosine (C(oh)), N4-methoxycytosine (C(mo)) and 6H, 8H-3,4-dihydropyrimido[4,5-c][1,2]oxazin-7-one (P) can form base pairs with both adenine and guanine. We examined the mutagenic properties of these ribonucleotide analogues in RNA in reverse transcription with HIV and AMV reverse transcriptases. Both reverse transcriptases incorporated dATP and dGTP opposite these analogues in RNA.
View Article and Find Full Text PDFUVA-induced conversion of 8-hydroxyguanine in oligonucleotides was studied. By irradiation with 334 nm UVA light, 8-hydroxyguanine was completely changed to unknown compounds. Monomeric nucleoside may be much less labile to UVA.
View Article and Find Full Text PDFNucleic Acids Symp Ser (Oxf)
July 2007
Understanding the biological consequences of DNA methylation is a current focus of intensive studies. A standard method for analyzing the methylation at position 5 of cytosines in genomic DNA involves chemical modification of the DNA with bisulfite, followed by PCR amplification and sequencing. Bisulfite deaminates cytosine, but it deaminates 5-methylcytosine only very slowly, thereby allowing determination of the methylated sites.
View Article and Find Full Text PDFNucleic Acids Res
January 2007
We have studied the mutagenic properties of ribonucleotide analogues by reverse transcription to understand their potential as antiretroviral agents by mutagenesis of the viral genome. The templating properties of nucleotide analogues including 6-(beta-D-ribofuranosyl)-3,4-dihydro-8H-pyrimido[4,5-c](1,2)oxazin-7-one, N4-hydroxycytidine, N4-methoxycytidine, N4-methylcytidine and 4-semicarbazidocytidine, which have been reported to exhibit ambiguous base pairing properties, were examined. We have synthesized RNA templates using T3 RNA polymerase, and investigated the specificity of the incorporation of deoxyribonucleoside triphosphates opposite these cytidine analogues in RNA by HIV and AMV reverse transcriptases.
View Article and Find Full Text PDFA DNA fragment enhancing efficiency of [PSI+]-dependent termination suppressor, sup111, was isolated from a genomic library of Saccharomyces cerevisiae and its function was attributed to an ORF of 1272 bp. This ORF, designated ESU1 (enhancer of termination suppression), corresponded to the 3'-terminal portion of GAL11. Contrasting to ESU1, GAL11 lowered the suppression efficiency of [PSI+] sup111.
View Article and Find Full Text PDFRev1p in yeast is essential for the translesion of abasic sites and 6-4 photoproducts. It plays a role as a translesion polymerase, but also supports translesion catalyzed by other polymerases. The protein has two domains, BRCT and Y-family polymerase.
View Article and Find Full Text PDFNucleic Acids Res Suppl
September 2003
We have studied the mutagenic specificity of abasic sites using the yeast oligonucleotides transformation assay. We introduced oligonucleotide containing a natural abasic site and a tetrahydrofuran abasic site into Rev1 mutants, rev1AA, which contains mutations of Asp467 and Glu468 residues of Rev1p to Ala in order to inactivate dCMP transferase activity, and rev1 delta, which lacks its whole coding sequence. The transformation efficiencies of rev1AA with abasic-containing oligonucleotides were lower than those of B7528, a strain proficient in REV1 gene, but much higher than rev1 delta mutant.
View Article and Find Full Text PDFWe have analyzed the mutagenic specificity of an abasic site in DNA using the yeast oligonucleotide transformation assay. Oligonucleotides containing an abasic site or its analog were introduced into B7528 or its derivatives, and nucleotide incorporation opposite abasic sites was analyzed. Cytosine was most frequently incorporated opposite a natural abasic site (O) ('C-rule'), followed by thymine.
View Article and Find Full Text PDFDeoxyribosyl-dihydropyrimido[4,5-c][1,2]oxazin-7-one (dP) is a potent mutagenic deoxycytidine-derived base analogue capable of pairing with both A and G, thereby causing G. C --> A. T and A.
View Article and Find Full Text PDFWe have studied mutagenic specificities of DNA lesions in vivo in yeast CYC1 oligonucleotide transformation assay. We introduced two lesions into oligonucleotides. One was a nucleoside analog, 3,4-dihydro-6H,8H-pyrimido[4,5-c][1,2]oxazin-7-one 2'-deoxyriboside (dP), which is highly mutagenic to bacteria.
View Article and Find Full Text PDF