The chiral indan derivative (S)-2 (2-[(8S)-1,6,7,8-tetrahydro-2H-indeno[5,4-b]furan-8-yl]ethyl-amine) was synthesized by enzyme-catalyzed asymmetric hydrolysis of the racemic acetamide 1 (N-[2-(1,6,7,8-tetrahydro-2H-indeno[5,4-b]furan-8-yl)ethyl]acetamide). The reaction was carried out using Bacillus sp. SUI-12 screened for the ability to hydrolyze 1 to give (S)-2 with high enantioselectivity.
View Article and Find Full Text PDFRacemic indan derivatives have been resolved by the hydrolysis of amide bonds using Corynebacterium ammoniagenes IFO12612 to produce (S)-amine and (R)-amides. In the kinetic resolution of 1 (N-12-(6-methoxy-indan-1-yl)ethyl]acetamide), it was possible to run the reaction to 44% conversion on a 10-g scale, obtaining (S)-amine 4 ((S)-2-(6-methoxy-indan-1-yl)ethylamine) at >99% enantiomeric excess (ee) and (R)-1 at 98% ee.
View Article and Find Full Text PDFMicrobial enantioselective ester hydrolysis for the preparation of optically active (3R,5S)-(-)-5-phenyl-4,1-benzoxazepine-3-acetic acid derivatives as potent squalene synthase inhibitors was investigated. Pseudomonas diminuta and Pseudomonas taetrolens hydrolyzed the racemic ethyl ester of the 5-(2-chlorophenyl) analogue to yield the (-)-carboxylic acid with excellent enantiomeric excess (>99% ee). We found that the (-)-enantiomer was an active inhibitor.
View Article and Find Full Text PDF