Publications by authors named "Kazuo Kunisawa"

Background And Purpose: Alterations in tryptophan-kynurenine (TRP-KYN) pathway are implicated in major depressive disorder (MDD). α7 nicotinic acetylcholine (α7nACh) receptor regulates the hypothalamic-pituitary-adrenal (HPA) axis. We have shown that deficiency of kynurenine 3-monooxygenase (KMO) induces depression-like behaviour via kynurenic acid (KYNA; α7nACh antagonist).

View Article and Find Full Text PDF

Negative experiences during adolescence, such as social isolation (SI), bullying, and abuse, increase the risk of psychiatric diseases in adulthood. However, the pathogenesis of psychiatric diseases induced by these factors remain poorly understood. In adolescents, stress affects the intestinal homeostasis in the gut-brain axis.

View Article and Find Full Text PDF

Maternal immune activation (MIA) is recognized as one of the significant environmental risk factors for neuropsychiatric disorders such as schizophrenia in adult offspring. However, the pathophysiological mechanisms remain unknown. The tryptophan (TRP)-kynurenine (KYN) pathway, influenced by inflammation, may be implicated in the pathophysiology of neuropsychiatric disorders.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by repetitive behaviors, social deficits, and cognitive impairments. Maternal use of valproic acid (VPA) during pregnancy is associated with an increased risk of ASD in offspring. The prevailing pathophysiological hypothesis for ASD involves excitation/inhibition (E/I) imbalances and serotonergic dysfunction.

View Article and Find Full Text PDF

High salt (HS) intake induces hypertension and cognitive impairment. Preventive strategies include against dietary supplements. Soybean lecithin is a widely used phospholipid supplement.

View Article and Find Full Text PDF

Demyelinating diseases including multiple sclerosis (MS) are chronic inflammatory diseases of the central nervous system. Indoleamine 2,3-dioxygenase 2 (Ido2) is a recently identified as catalytic enzyme involved in the rate-limiting step of the tryptophan-kynurenine pathway that influences susceptibility to inflammatory diseases. However, the pathological role of Ido2 in demyelination remains unclear.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder characterized by social deficits and stereotyped, repetitive patterns of behaviors, limited interests, and cognitive impairment. Especially, social deficit has been considered a core feature of ASD. Because of the limitations of the experimental approach in humans, valid animal models are essential in an effort to identify novel therapeutics for social deficits in ASD.

View Article and Find Full Text PDF

Stressful life events contribute to the onset of major depressive disorder (MDD). We recently demonstrated abnormalities in ubiquitination in the pathophysiology of MDD. However, the underlying molecular mechanisms remain unclear.

View Article and Find Full Text PDF

Indoleamine 2,3-dioxygenase 2 (IDO2) is an enzyme of the tryptophan-kynurenine pathway that is constitutively expressed in the brain. To provide insight into the physiological role of IDO2 in the brain, behavioral and neurochemical analyses in IDO2 knockout (KO) mice were performed. IDO2 KO mice showed stereotyped behavior, restricted interest and social deficits, traits that are associated with behavioral endophenotypes of autism spectrum disorder (ASD).

View Article and Find Full Text PDF
Article Synopsis
  • High salt intake has been linked to increased blood pressure and cognitive issues, but the mechanisms behind these effects, particularly involving the Angiotensin II (Ang II)-AT receptor and prostaglandin E2 (PGE2)-EP receptor systems, are not fully understood.
  • In a 12-week study with mice consuming a high salt solution, researchers observed significant changes in blood pressure and cognitive/emotional function, alongside alterations in tau phosphorylation in the brain regions associated with these behaviors.
  • The study found that the adverse effects of high salt on cognitive and emotional function may be linked to changes in key proteins, which could be mitigated by treatments targeting the Ang II-AT and PGE2-EP systems, suggesting new therapeutic
View Article and Find Full Text PDF

The monoamine hypothesis has been common hypotheses for the pathophysiology of major depressive disorder (MDD). Since mainstream antidepressants are selective serotonin (5-HT) reuptake inhibitors, hypo-serotonergic function has been implicated in the MDD. However, one-third of patients are refractory to the treatment with antidepressants.

View Article and Find Full Text PDF
Article Synopsis
  • Long-term high-fat diets in mice lead to obesity, altered kidney lipid metabolism, and renal damage, highlighting the detrimental effects of dietary fats.
  • Sodium-glucose co-transporter inhibitor phlorizin was administered to the high-fat diet mice, revealing its potential nephroprotective effects through mechanisms involving diuresis and the elimination of lipid buildup in kidney cells.
  • Accumulation of lamellar bodies enriched with sphingomyelin in the proximal renal tubules was observed, suggesting that their urinary excretion could serve as a protective response against kidney damage in obese mice.
View Article and Find Full Text PDF

Phencyclidine (PCP) causes mental symptoms that closely resemble schizophrenia through the inhibition of the glutamatergic system. The kynurenine (KYN) pathway (KP) generates metabolites that modulate glutamatergic systems such as kynurenic acid (KA), quinolinic acid (QA), and xanthurenic acid (XA). Kynurenine 3-monooxygenase (KMO) metabolizes KYN to 3-hydroxykynurenine (3-HK), an upstream metabolite of QA and XA.

View Article and Find Full Text PDF

Major depressive disorder (MDD) is the most prevalent and serious psychiatric disease involving inflammation. Loureirin C and Xanthoceraside are extracts of dragon's blood and Xanthoceras sorbifolia Bunge, respectively, which have neuroprotective and anti-inflammatory properties. In this study, we examined whether Loureirin C and Xanthoceraside attenuated depression-like behaviors and inflammation induced by chronic unpredicted mild stress (CUMS) in mice.

View Article and Find Full Text PDF

Brain derived neurotrophic factor (BDNF) is one of the most abundant neurotrophic factors, and its deficits are involved in the pathogenesis of major depressive disorders (MDD). Loureirin C (Lou C) is a compound derived from red resin extracted from the stems of Chinese dragon's blood. Xanthoceraside (Xan) is a triterpenoid saponin extracted from the husks of Xanthoceras sorbifolia Bunge.

View Article and Find Full Text PDF

Major depressive disorder (MDD) is a common and serious psychiatric disease that involves brain inflammation. Bifidobacterium breve is commonly used as a probiotic and was shown to improve colitis and allergic diseases by suppressing the inflammatory response. Heat-sterilized B.

View Article and Find Full Text PDF

Dopamine is a key neurotransmitter that regulates attention through dopamine D1 and D2-receptors in the prefrontal cortex (PFC). We previously developed an object-based attention test (OBAT) to evaluate attention in mice. Disruption of the dopaminergic neuronal system in the PFC induced attentional impairment in the OBAT.

View Article and Find Full Text PDF

Tryptophan (TRP) is metabolized via the kynurenine (KYN) pathway, which is related to the pathogenesis of major depressive disorder (MDD). Kynurenine 3-monooxygenase (KMO) is a pivotal enzyme in the metabolism of KYN to 3-hydroxykynurenine. In rodents, KMO deficiency induces a depression-like behavior and increases the levels of kynurenic acid (KA), a KYN metabolite formed by kynurenine aminotransferases (KATs).

View Article and Find Full Text PDF

Disturbances of attention are a common behavioral feature associated with neuropsychiatric disorders with largely unknown underlying causes. We previously developed an object-based attention test (OBAT) as a simple and practical method for evaluating attention in mice. Since its establishment, the test has become a popular method for assessing attention and related underlying mechanisms in various mouse models.

View Article and Find Full Text PDF
Article Synopsis
  • Paranodal axoglial junctions are critical for fast nerve conduction and axon organization in myelinated fibers, with Neurofascin155 (Nfasc155) being a key molecule for their formation.* -
  • Disruption of Nfasc155, particularly in the context of multiple sclerosis (MS), leads to significant delays in muscle activation and reduced electrical signal strength, mirroring changes seen in MS patients.* -
  • The study suggests that measuring changes in Nfasc155 could serve as a potential early biomarker for MS, highlighting its impact on motor system functionality.*
View Article and Find Full Text PDF

Indoleamine 2,3-dioxygenase 1 (IDO1) is the first rate-limiting enzyme that metabolizes tryptophan to the kynurenine pathway. Its activity is highly inducible by pro-inflammatory cytokines and correlates with the severity of major depressive disorder (MDD). MicroRNAs (miRNAs) are involved in gene regulation and the development of neuropsychiatric disorders including MDD.

View Article and Find Full Text PDF

Remyelination plays an important role in determining the fate of demyelinating disorders. However, it is arrested during chronic disease states. Cystatin F, a papain-like lysosomal cysteine proteinase inhibitor, is a crucial regulator of demyelination and remyelination.

View Article and Find Full Text PDF

Successful completion of daily activities relies on the ability to select the relevant features of the environment for memory and recall. Disruption to these processes can lead to various disorders, such as attention-deficit hyperactivity disorder (ADHD). Dopamine is a neurotransmitter implicated in the regulation of several processes, including attention.

View Article and Find Full Text PDF

Tryptophan metabolism is important to induce immune tolerance in tumors. To date, 3 types of tryptophan-metabolizing enzymes have been identified: indoleamine 2,3-dioxygenase 1 and 2 (IDO1 and IDO2) and tryptophan 2,3-dioxygenase 2. Numerous studies have focused on IDO1 as its expression is enhanced in various cancers.

View Article and Find Full Text PDF

The enzyme kynurenine aminotransferase (KAT) catalyses the conversion of kynurenine (KYN) to kynurenic acid (KYNA). Although the isozymes KAT1-4 have been identified, KYNA is mainly produced by KAT2 in brain tissues. KNYA is an antagonist of N-methyl-D-aspartate and α-7-nicotinic acetylcholine receptors, and accumulation of KYNA in the brain has been associated with the pathology of schizophrenia.

View Article and Find Full Text PDF