Using dipolar continuous-wave and pulsed electron paramagnetic resonance methods, we have determined the distribution of the distances between two spin labels placed on the middle of each of the neck linkers of dimeric kinesin. In the absence of microtubules, the distance was centered at 3.3 nm, but displayed a broad distribution with a width of 2.
View Article and Find Full Text PDFWe have studied biological nano-machines, motor and switch proteins operating as supramolecular complexes by electron spin resonance (ESR) and found key features of their molecular movements. In all the systems, the specific movements of elements or domains were detected and quite dynamic at nanometer scale. We have observed two broad but distinct orientations, separated by a 25 degrees axial rotation, of a spin label attached specifically to the light chain (LC) domain of myosin motor in the muscle fibers.
View Article and Find Full Text PDFReporter assays that use luciferase are widely employed for monitoring cellular events associated with gene expression. In general, firefly luciferase and Renilla luciferase are used for monitoring single gene expression. However, the expression of more than one gene cannot be monitored simultaneously by this system because one of the two reporting luciferases must be used as an internal control.
View Article and Find Full Text PDFUsing electron spin resonance, we have studied dynamic structures of myosin neck domain and troponin C by site-directed spin labeling. We observed two broad but distinct orientations of a spin label attached specifically to a single cysteine (cys156) on the regulatoy light chain (RLC) of myosin in relaxed skeletal muscle fibers. The two probe orientations, separated by a 25 degrees axial rotation, did not change upon muscle activation, but orientational distributions became narrower substantially, indicating that a fraction of myosin heads undergoes a disorder-to-order transition of the myosin light chain domain upon force generation and muscle contraction.
View Article and Find Full Text PDFBiochem Biophys Res Commun
February 2004
Conventional kinesin is a highly processive motor that converts the chemical energy of ATP hydrolysis into the unidirectional motility along microtubules. The processivity is thought to depend on the coordination between ATPase cycles of two motor domains and their neck linkers. Here we have used site-directed spin labeling electron spin resonance (SDSL-ESR) to determine the conformation of the neck linker in kinesin dimer in the presence and absence of microtubules.
View Article and Find Full Text PDF