Publications by authors named "Kazunori Serita"

Biosensors operating in the terahertz (THz) region are gaining substantial interest in biomedical analysis due to their significant potential for high-sensitivity trace-amount solution detection. However, progress in compact, high-sensitivity chips and methods for simple, rapid and trace-level measurements is limited by the spatial resolution of THz waves and their strong absorption in polar solvents. In this work, a compact nonlinear optical crystal (NLOC)-based reflective THz biosensor with a few arrays of asymmetrical meta-atoms was developed.

View Article and Find Full Text PDF

Terahertz (THz) time-domain spectroscopy (TDS) is a recently emerging analysis method which can provide unique information on molecular vibration and rotation induced by inter/intra-molecular interactions. Although the application of THz-TDS to high-performance microscale separation methods like capillary electrophoresis (CE) has been anticipated, it has been hindered due to the diffraction limit of THz wave (typically, hundreds µm). In order to realize CE-THz-TDS, in this study, we placed a narrow open-tubular capillary on the surface of a GaAs semiconductor substrate as a "localized" THz-emitter.

View Article and Find Full Text PDF

The one-dimensional confinement of quasiparticles in individual carbon nanotubes (CNTs) leads to extremely anisotropic electronic and optical properties. In a macroscopic ensemble of randomly oriented CNTs, this anisotropy disappears together with other properties that make them attractive for certain device applications. The question however remains if not only anisotropy but also other types of behaviors are suppressed by disorder.

View Article and Find Full Text PDF

Terahertz waves have attracted great attention in biomolecule research because of the fact that they cover the range of energy levels of weak interactions, skeleton vibrations, and dipole rotations during inter- and intramolecular interactions in biomacromolecules. In this study, we validated the feasibility of employing terahertz time-domain spectroscopy (THz-TDS) for the nondestructive and label-free monitoring of protein digestion. The acid protease, pepsin, was used at its optimal pH to hydrolyze bovine serum albumin.

View Article and Find Full Text PDF

Excitons play major roles in optical processes in modern semiconductors, such as single-wall carbon nanotubes (CNTs), transition metal dichalcogenides, and 2D perovskite quantum wells. They possess extremely large binding energies (>100 meV), dominating absorption and emission spectra even at high temperatures. The large binding energies imply that they are stable, that is, hard to ionize, rendering them seemingly unsuited for optoelectronic devices that require mobile charge carriers, especially terahertz emitters and solar cells.

View Article and Find Full Text PDF

The process of terahertz generation through optical rectification in a nonlinear crystal is modeled using discretized equivalent current sources. The equivalent terahertz sources are distributed in the active volume and computed based on a separately modeled near-infrared pump beam. This approach can be used to define an appropriate excitation for full-wave electromagnetic numerical simulations of the generated terahertz radiation.

View Article and Find Full Text PDF

We have proposed and developed a scanning laser terahertz (THz) near-field imaging system using a 1.56 μm femtosecond fiber laser for high spatial resolution and high-speed measurement. To obtain the two-dimensional (2D) THz images of samples, the laser pulses are scanned over a 2D THz emitter plate [DASC: 4'-dimenthylamino-N-methyl-4- stilbazolium p-chlorobenzenesulfonate] by a galvano meter.

View Article and Find Full Text PDF

Planar metamaterials consisting of subwavelength resonators have been recently proposed for thin dielectric film sensing in the terahertz frequency range. Although the thickness of the dielectric film can be very small compared with the wavelength, the required area of sensed material is still determined by the diffraction-limited spot size of the terahertz beam excitation. In this article, terahertz near-field sensing is utilized to reduce the spot size.

View Article and Find Full Text PDF