Publications by authors named "Kazunari Owada"

Fetal heart rate (FHR) monitoring, typically using Doppler ultrasound (DUS) signals, is an important technique for assessing fetal health. In this work, we develop a robust DUS-based FHR estimation approach complemented by DUS signal quality assessment (SQA) based on unsupervised representation learning in response to the drawbacks of previous DUS-based FHR estimation and DUS SQA methods. We improve the existing FHR estimation algorithm based on the autocorrelation function (ACF), which is the most widely used method for estimating FHR from DUS signals.

View Article and Find Full Text PDF

Objective: To monitor fetal health and growth, fetal heart rate is a critical indicator. The non-invasive fetal electrocardiogram is a widely employed measurement for fetal heart rate estimation, which is extracted from the electrodes placed on the surface of the maternal abdomen. The qualities of the fetal ECG recordings, however, are frequently affected by the noises from various interference sources.

View Article and Find Full Text PDF

The non-invasive fetal electrocardiogram (FECG) derived from abdominal surface electrodes has been widely used for fetal heart rate (FHR) monitoring to assess fetal well-being. However, the accuracy of FECG-based FHR estimation heavily depends on the quality of FECG signal itself, which can generally be affected by several interference sources such as maternal heart activities and fetal movements. Hence, FECG signal quality assessment (SQA) is an essential task to improve the accuracy of FHR estimation by removing or interpolating low-quality FECG signals.

View Article and Find Full Text PDF

Fetal heart rate monitoring using the abdominal electrocardiograph (ECG) is an important topic for the diagnosis of heart defects. Many studies on fetal heart rate detection have been presented, however, their accuracy is still unsatisfactory. That is because the fetal ECG waveform is contaminated by maternal ECG interference, muscle contractions, and motion artifacts.

View Article and Find Full Text PDF

Antenatal fetal health monitoring primarily depends on the signal analysis of abdominal or transabdominal electrocardiogram (ECG) recordings. The noninvasive approach for obtaining fetal heart rate (HR) reduces risks of potential infections and is convenient for the expectant mother. However, in addition to strong maternal ECG presence, undesirable signals due to body motion activity, muscle contractions, and certain bio-electric potentials degrade the diagnostic quality of obtained fetal ECG from abdominal ECG recordings.

View Article and Find Full Text PDF

Despite the enormous potential applications, non-invasive recordings have not yet made enough satisfaction for fetal disease detection. This is mainly due to the fetal ECG signal is contaminated by the maternal electrocardiograph (ECG) interference, muscle contractions, and motion artifacts. In this paper, we propose a joint multiple subspace-based blind source separation (BSS) approach to extract the fetal heart rate (HR), so that it could greatly reduce the effect of maternal ECG and motion artifacts.

View Article and Find Full Text PDF

Accurate assessment of fetal well-being is one of the most important tasks for obstetricians. It is still difficult to measure fetal electrocardiogram (ECG) during fetal movements. Recently, a new method, blind source separation with reference signals, was proposed for stable measurements.

View Article and Find Full Text PDF