We characterized the potential functioning and composition of the bacterial and fungal communities in the O and A horizons of forest soils using community-level physiological profile (CLPP) based on BIOLOG analysis, and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis of 16S and 18S rDNA fragments, respectively. In addition, relationships between the potential functioning and the community composition in each horizon, and between the O and A horizons, were assessed using Procrustes analysis. For the bacterial and fungal communities, the CLPP and DGGE profile were clearly separated between the O and A horizons in a principal coordinate analysis except for the fungal CLPP.
View Article and Find Full Text PDFAlthough microorganisms will preferentially allocate resources to synthesis of nitrogen (N)-acquiring enzymes when soil N availability is low according to the resource allocation model for extracellular enzyme synthesis, a robust link between microbial N-acquiring enzyme activity and soil N concentration has not been reported. To verify this link, we measured several indices of soil N availability and enzyme activity of four N-acquiring enzymes [N-acetyl-β-glucosaminidase (NAG), protease (PR), urease (UR), and L-asparaginase (LA)] and a carbon (C)-acquiring enzyme [β-D-glucosidase (BG)] in arable and forest soils. Although the ratios of NAG/BG and PR/BG were not significantly related with indices of soil N availability, ratios of LA/BG and UR/BG were strongly and negatively related with potentially mineralizable N estimated by aerobic incubation but not with pools of labile inorganic N and organic N.
View Article and Find Full Text PDFWe examined possible adverse effects of heavy metals on microbial activity, biomass, and community composition using the simultaneously extracted metals (SEM)/acid-volatile sulfide (AVS)-based approach and measurements of exchangeable metal concentrations in three paddy soils (wastewater-contaminated soil, mine-contaminated soil, and noncontaminated soil) incubated for 60 days under flooded conditions. Incubation under flooding increased pH and decreased Eh in all samples. AVS increased when Eh decreased to approximately -200 mV for the mine-contaminated and noncontaminated soils, while the wastewater-contaminated soil originally had a high concentration of AVS despite its air-dried condition.
View Article and Find Full Text PDFAndosols comprise one of the most important soil groups for agricultural activities in Japan because they cover about 46.5% of arable upland fields. In this soil group, available phosphorus (P) is accumulated by application of excessive fertilizer, but little is known about the influence of increasing P availability on microbial community diversity at large scales.
View Article and Find Full Text PDFThe lack of a universal method to extract RNA from soil hinders the progress of studies related to nitrification in soil, which is an important step in the nitrogen cycle. It is particularly difficult to extract RNA from certain types of soils such as Andosols (volcanic ash soils), which is the dominant agricultural soil in Japan, because of RNA adsorption by soil. To obtain RNA from these challenging soils to study the bacteria involved in nitrification, we developed a soil RNA extraction method for gene expression analysis.
View Article and Find Full Text PDFWe simultaneously examined the bacteria, fungi and nematode communities in Andosols from four agro-geographical sites in Japan using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and statistical analyses to test the effects of environmental factors including soil properties on these communities depending on geographical sites. Statistical analyses such as Principal component analysis (PCA) and Redundancy analysis (RDA) revealed that the compositions of the three soil biota communities were strongly affected by geographical sites, which were in turn strongly associated with soil characteristics such as total C (TC), total N (TN), C/N ratio and annual mean soil temperature (ST). In particular, the TC, TN and C/N ratio had stronger effects on bacterial and fungal communities than on the nematode community.
View Article and Find Full Text PDFThe effects of soil and fertilizer types on archaeal communities were evaluated by real-time PCR and PCR-denaturing gradient gel electrophoresis (DGGE) targeting the 16S rRNA gene of total DNA directly extracted from upland field soils. Twelve experimental upland field plots containing four different soil types, i.e.
View Article and Find Full Text PDFSoil type is one of the key factors affecting soil microbial communities. With regard to ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB), however, it has not been determined how soil type affects their community size and soil nitrification activity. Here we quantitatively analyzed the ammonia monooxygenase genes (amoA) of these ammonia oxidizers in fields with three different soil types (Low-humic Andosol [LHA], Gray Lowland Soil [GLS], and Yellow Soil [YS]) under common cropping conditions, and assessed the relationships between soil nitrification activity and the abundance of each amoA.
View Article and Find Full Text PDFPrion diseases are fatal neurodegenerative disorders that are caused by infectious agents known as prions. Prions are composed primarily of the pathogenic prion protein isoform, PrP(Sc). Because significant levels of infectivity have been detected in excrement from animals infected with scrapie and chronic wasting disease, studies on the dynamics of PrP(Sc) levels in contaminated soil are needed to assess the possible horizontal transmission of prion diseases.
View Article and Find Full Text PDFEffects of plant litter type (larch needle-leaves, mixed broad-leaves, and sasa green leaves) and nutrient addition (nitrogen and phosphorus) on bacterial community-level physiological profiles (CLPPs) of a forest soil were examined using BIOLOG EcoPlates(TM). Both the litter and nutrient additions significantly increased color development in most of the wells in the BIOLOG microplates, with the effect of the latter being especially great for soils amended with plant leaves low in nutrients. Nitrogen addition to soils decreased the color development of some nitrogenous substrates.
View Article and Find Full Text PDFThe gene sequences encoding disaggregatase (Dag), the enzyme responsible for dispersion of cell aggregates of Methanosarcina mazei to single cells, were determined for three strains of M. mazei (S-6(T), LYC and TMA). The dag genes of the three strains were 3234 bp in length and had almost the same sequences with 97% amino acid sequence identities.
View Article and Find Full Text PDFA denaturing gradient gel electrophoresis (DGGE) method for analyzing 16S rDNA of methanogenic archaeal community in paddy field soil is presented. Five specific primers for 16S rDNA of methanogenic archaea, which were modified from the primers for archaea, were first evaluated by polymerase chain reaction and DGGE using genomic DNAs of 13 pure culture strains of methanogenic archaea. The DGGE analysis was possible with two primer pairs (0348aF-GC and 0691R; 0357F-GC and 0691R) of the five pairs tested although 16S rDNA of some non-methanogenic archaea was amplified with 0348aF-GC and 0691R.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
September 2003
Methanoculleus bourgensis, Methanoculleus olentangyi and Methanoculleus oldenburgensis are subjective synonyms on the basis of phenotypic, genotypic and phylogenetic characteristics. Methanoculleus bourgensis must be the name of the united species because it is the type of the genus METHANOCULLEUS:
View Article and Find Full Text PDF