Publications by authors named "Kazunari Kashihara"

Mineral element accumulation in plants is influenced by soil conditions and varietal factors. We investigated the dynamic accumulation of 12 elements in straw at the flowering stage and in grains at the mature stage in eight rice varieties with different genetic backgrounds (Japonica, Indica, and admixture) and flowering times (early, middle, and late) grown in soil with various pH levels. In straw, Cd, As, Mn, Zn, Ca, Mg, and Cu accumulation was influenced by both soil pH and varietal factors, whereas P, Mo, and K accumulation was influenced by pH, and Fe and Ni accumulation was affected by varietal factors.

View Article and Find Full Text PDF

The combination of the DNA sequence-specific recombination system Cre/LoxP and the DNA transposon system Activator (Ac)/Dissociation (Ds) has been used for insertional and deletional mutagenesis, as well as for the generation of artificial ring chromosomes in model plants such as Arabidopsis and tobacco. However, it takes a long time to complete this process, even in Arabidopsis. To overcome this issue, a new binary vector, pDLHC, has been developed to induce chromosomal rearrangements for a short time in rice.

View Article and Find Full Text PDF

The centromere is a structurally and functionally specialized region present on every eukaryotic chromosome. Lotus japonicus is a model legume species for which there is very limited information on the centromere structure. Here we cloned and characterized the L.

View Article and Find Full Text PDF

A eukaryotic chromosome consists of a centromere, two telomeres and a number of replication origins, and 'artificial chromosomes' may be created in yeast and mammals when these three elements are artificially joined and introduced into cells. Plant artificial chromosomes (PACs) have been suggested as new vectors for the development of new crops and as tools for basic research on chromosomes. However, indisputable PAC formation has not yet been confirmed.

View Article and Find Full Text PDF

The centromere is a multi-functional complex comprising centromeric DNA and a number of proteins. To isolate unidentified centromeric DNA sequences, centromere-specific histone H3 variants (CENH3) and chromatin immunoprecipitation (ChIP) have been utilized in some plant species. However, anti-CENH3 antibody for ChIP must be raised in each species because of its species specificity.

View Article and Find Full Text PDF

The centromere plays an essential role for proper chromosome segregation during cell division and usually harbors long arrays of tandem repeated satellite DNA sequences. Although this function is conserved among eukaryotes, the sequences of centromeric DNA repeats are variable. Most of our understanding of functional centromeres, which are defined by localization of a centromere-specific histone H3 (CENH3) protein, comes from model organisms.

View Article and Find Full Text PDF

Although a centromeric DNA fragment of tobacco (Nicotiana tabacum), Nt2-7, has been reported, the overall structure of the centromeres remains unknown. To characterize the centromeric DNA sequences, we conducted a chromatin immunoprecipitation assay using anti-NtCENH3 antibody and chromatins isolated from two ancestral diploid species (Nicotiana sylvestris and Nicotiana tomentosiformis) of N. tabacum and isolated a 178-pb fragment, Nto1 from N.

View Article and Find Full Text PDF

The centromere as a kinetochore assembly site is fundamental to the partitioning of genetic material during cell division. In order to determine the functional centromeres of soybean, we characterized the soybean centromere-specific histone H3 (GmCENH3) protein and developed an antibody against the N-terminal end. Using this antibody, we cloned centromere-associated DNA sequences by chromatin immunoprecipitation.

View Article and Find Full Text PDF

The centromere is a region utilized for spindle attachment on a eukaryotic chromosome and essential for accurate chromatid segregation. In most eukaryotes, centromeres have specific DNA sequences and are capable of assembling specific proteins to form a complex called the kinetochore. Among these proteins, centromeric histone H3 (CENH3) is one of the most fundamental, since CENH3s have been found in all investigated functional centromeres and recruits other centromeric proteins.

View Article and Find Full Text PDF

Centromeres play an important role in chromosome transmission in eukaryotes and comprise specific DNA and proteins that form complexes called kinetochores. In tobacco, although a centromere-specific histone H3 (NtCENH3) and centromeric DNA sequence (Nt2-7) have been identified, no other kinetochore components have been determined. In this study, we isolated and characterized cDNAs encoding two centromeric proteins CENP-C and MIS12 from Nicotiana tabaccum.

View Article and Find Full Text PDF

Centromeres play an important role in segregating chromosomes into daughter cells, and centromeric DNA assembles specific proteins to form a complex referred to as the kinetochore. Among these proteins, centromere-specific histone H3 (CENH3) is one of the most characterized and found to be located only on active centromeres. We isolated four different CENH3-coding complementary DNAs (cDNAs), two from Nicotiana tabaccum and one each from the ancestral diploid species, Nicotiana sylvestris and Nicotiana tomentosiformis and raised an antibody against N-terminal amino acid sequences deduced from the cDNAs.

View Article and Find Full Text PDF

Two minichromosomes (alpha and delta) in addition to two other aberrant chromosomes (beta and gamma) were found in a transgenic Arabidopsis plant produced by an in planta vacuum infiltration technique. The minichromosomes were successfully separated by successive crossing and selfing and added to wild-type Columbia (Col-0) as a supernumerary chromosome. FISH indicated that both of the two minichromosomes originated from the short arm of chromosome 2.

View Article and Find Full Text PDF

Although holocentric species are scattered throughout the plant and animal kingdoms, only holocentric chromosomes of the nematode worm Caenorhabditis elegans have been analyzed with centromeric protein markers. In an effort to determine the holocentric structure in plants, we investigated the snowy woodrush Luzula nivea. From the young roots, a cDNA encoding a putative centromere-specific histone H3 (LnCENH3) was successfully isolated based on sequence similarity among plant CENH3s.

View Article and Find Full Text PDF