An ESR study has been made on the adsorption of three types of aminoxyl radicals with different substituent groups in the nanochannel of MCM-41 in benzene. In the suspensions of MCM-41, all the aminoxyl radicals, usually called as spin probes, show the ESR spectra composed of two signals: the main broader one from the spin probes trapped in the nanochannel, and a sharp minor signal from those in the bulk. The spin probes adsorbed in the nanochannel retain considerable mobility especially at higher temperatures over 300 K.
View Article and Find Full Text PDFJ Phys Chem B
November 2005
The effect of MCM-41 on the ESR spectrum of an aqueous spin probe solution was observed. The sharp ESR spectrum turns into a rather broad characteristic one leaving a sharper signal as the minor component, immediately after the addition of MCM-41 powder to the system. This observation indicates that MCM-41 traps the solute molecule into the nanochannel by letting the solvent water form a rather stable molecular cage, since the ESR line shape indicates that the nitroxide radical undergoes anisotropic rotation without being adsorbed on the wall.
View Article and Find Full Text PDFA spin-probe ESR study has been made on the dynamics of 2-propanol and water molecules in the nanochannel of MCM-41 at various temperatures. In the former system, 2-propanol is separated into two phases: one with molecules immobilized in the ESR time scale and the other with mobile ones, even at temperatures more than 40 degrees higher than the bulk melting point. In the case of water, on the other hand, only the "immobilized" water was detected at a temperature as high as 313 K.
View Article and Find Full Text PDF