Publications by authors named "Kazumi Nomura"

Purpose: Peripheral T-cell lymphoma (PTCL) is an aggressive disease with a poor prognosis. Brentuximab vedotin (BV), an anti-CD30 monoclonal antibody linked to a microtubule-disrupting agent, has been approved for the treatment of PTCL. We evaluated a new effective combination partner of BV using non-clinical approaches that could potentially identify agents capable of improving survival times for patients with PTCL.

View Article and Find Full Text PDF

The caseinolytic mitochondrial matrix peptidase chaperone subunit (ClpX) plays an important role in the heme-dependent regulation of 5-aminolevulinate synthase (ALAS1), a key enzyme in heme biosynthesis. However, the mechanisms underlying the role of ClpX in this process remain unclear. In this in vitro study, we confirmed the direct binding between ALAS1 and ClpX in a heme-dependent manner.

View Article and Find Full Text PDF

ALAS2 gene mutations cause X-linked sideroblastic anemia. The presence of ring sideroblasts in a patient's bone marrow is the hallmark of sideroblastic anemia, but the precise mechanisms underlying sideroblast formation are largely unknown. Using a genome-editing system, a mutation was introduced in the erythroid-specific enhancer of the ALAS2 gene in HUDEP2 cells, which were derived from human umbilical stem cells and can produce erythrocytes.

View Article and Find Full Text PDF

In eukaryotic cells, heme production is tightly controlled by heme itself through negative feedback-mediated regulation of nonspecific 5-aminolevulinate synthase (ALAS1), which is a rate-limiting enzyme for heme biosynthesis. However, the mechanism driving the heme-dependent degradation of the ALAS1 protein in mitochondria is largely unknown. In the current study, we provide evidence that the mitochondrial ATP-dependent protease ClpXP, which is a heteromultimer of CLPX and CLPP, is involved in the heme-dependent degradation of ALAS1 in mitochondria.

View Article and Find Full Text PDF

Actin-interacting protein 1 (AIP1) is a conserved WD repeat protein that promotes disassembly of actin filaments when actin-depolymerizing factor (ADF)/cofilin is present. Although AIP1 is known to be essential for a number of cellular events involving dynamic rearrangement of the actin cytoskeleton, the regulatory mechanism of the function of AIP1 is unknown. In this study, we report that two AIP1 isoforms from the nematode Caenorhabditis elegans, known as UNC-78 and AIPL-1, are pH-sensitive in enhancement of actin filament disassembly.

View Article and Find Full Text PDF

CAP (cyclase-associated protein) is a conserved regulator of actin filament dynamics. In the nematode Caenorhabditis elegans, CAS-1 is an isoform of CAP that is expressed in striated muscle and regulates sarcomeric actin assembly. In the present study, we report that CAS-2, a second CAP isoform in C.

View Article and Find Full Text PDF

Assembly of contractile apparatuses in striated muscle requires precisely regulated reorganization of the actin cytoskeletal proteins into sarcomeric organization. Regulation of actin filament dynamics is one of the essential processes of myofibril assembly, but the mechanism of actin regulation in striated muscle is not clearly understood. Actin depolymerizing factor (ADF)/cofilin is a key enhancer of actin filament dynamics in striated muscle in both vertebrates and nematodes.

View Article and Find Full Text PDF

Disassembly of actin filaments by actin-depolymerizing factor (ADF)/cofilin and actin-interacting protein 1 (AIP1) is a conserved mechanism to promote reorganization of the actin cytoskeleton. We previously reported that unc-78, an AIP1 gene in the nematode Caenorhabditis elegans, is required for organized assembly of sarcomeric actin filaments in the body wall muscle. unc-78 functions in larval and adult muscle, and an unc-78-null mutant is homozygous viable and shows only weak phenotypes in embryos.

View Article and Find Full Text PDF

Alterations in circadian rhythm generation may be related to the development of mood disorders. Although it has been reported that the most popular antidepressant, selective serotonin reuptake inhibitors (SSRIs) affect circadian phase, no data are available that describe the effects of SSRIs on other circadian parameters (period, amplitude and damping rate) in dissociated cells. In the present study we used real-time monitoring of bioluminescence in rat-1 fibroblasts expressing the Period1-luciferase transgene, and that in Period1-luciferase transgenic mouse suprachiasmatic nucleus (SCN) explants, in order to characterize the effects of SSRI on circadian oscillator function in vitro.

View Article and Find Full Text PDF

In a previous study, we showed that the Ca2+/calmodulin-dependent protein kinase IIdelta (CaMKIIdelta) activates the mouse Per1 (mPer1) promoter through a 5'-GAGGGG-3' motif near exon1B. Here we use luciferase reporter gene assays to document additive activation of the mPer1 promoter by CaMKIIdelta and mitogen-activated protein kinase (MAPK) pathways. Transfection of constitutively active MEKK markedly increased mPer1 promoter activity in NB2A cells.

View Article and Find Full Text PDF

Four subunits of Ca2+/calmodulin-dependent protein kinase II (CaM KII) have several isoforms, which differ in the variable domain. We previously reported that all subunits were highly expressed in rat striatal neurons. To examine intracellular distributions of CaM KII subunits in the rat striatal neurons, we performed immunoblot analysis with antibodies specific to each subunit in cell extracts from the rat striatum after continuous sucrose density gradient fractionation.

View Article and Find Full Text PDF

Recent studies suggest that CaM kinase II is involved in light-induced phase delays and induction of Per1 and Per2 genes in the hamster suprachiasmatic nucleus (SCN) (Yokota et al.,2001). We focused on intracellular mechanisms of the CaM kinase II-induced mPer1 gene expression.

View Article and Find Full Text PDF