A lanthanum silicate LaSiO (LSO) crystallizes in an apatite-type structure and has been known as a promising oxide-ion conductor. Here, we report the activity of LSO for catalytic partial oxidation of methane (CPOX) to synthesis gas. The LSO catalyst demonstrated relatively high catalytic activity from 500 to 700 °C, with CH conversion reaching 22.
View Article and Find Full Text PDFPlant Biotechnol (Tokyo)
June 2021
The mature embryos of rice seeds contain translatable mRNAs required for the initial phase of germination. To clarify the relationship between seed longevity and RNA integrity in embryos, germinability and stability of embryonic RNAs were analyzed using the seeds of rice cultivars subjected to controlled deterioration treatment (CDT) or long periods of storage. Degradation of RNA from embryos of a rice cultivar "Nipponbare" was induced by CDT before the decline of the germination rate and we observed a positive relationship between seed germinability and integrity of embryonic RNAs.
View Article and Find Full Text PDFThe ideal retrograde filling material that is easy to handle, has good physicochemical properties, and is biocompatible has not yet been developed. The current study reports the development of a novel bioactive glass based powder for use as a retrograde filling material that is capable of altering the consistency and hardening rate of mixtures when mixed with existing bioactive glass based cement. Furthermore, its physicochemical properties, in vitro effects on human cementoblast-like cells, and in vivo effects on inflammatory responses were evaluated.
View Article and Find Full Text PDFThe purpose of this study is to evaluate the effect of a bioactive glass-based root canal sealer, Nishika Canal Sealer BG (CS-BG), on the incidence of postoperative pain (PP) after root canal obturation (RCO). Eleven dentists performed pulpectomy or infected root canal treatments for 555 teeth. During RCO, CS-BG was used.
View Article and Find Full Text PDFCarbon monoxide (CO) molecules are attracting attention as capping agents that control the structure of metal nanoparticles. In this study, we aimed to control the shape and surface structure of Pd particles by reducing the supported Pd precursor with CO. The reduction of Pd nanoparticles with CO promoted the exposure of step sites and generated spherical and concave-tetrahedral Pd particles on carbon and SiO supports.
View Article and Find Full Text PDFAnion exchange membrane fuel cells (AEMFCs) are being developed for practical use. However, it is necessary to improve the hydrogen oxidation reaction (HOR) under alkaline conditions to enhance the performance of AEMFCs. In this study, carbon-supported Ru-Ir alloy nanoparticle catalysts (Ru-Ir/C) were developed because they offer higher HOR activity compared with the Pt-based catalysts.
View Article and Find Full Text PDFPhys Chem Chem Phys
August 2019
The active sites of Pd/Al2O3 catalysts for CO oxidations were identified by investigating the dependence of CO oxidation activities on the surface structure and morphology of Pd nanoparticles. The maximum catalytic activity was obtained for Pd particles approximately 2 nm in particle size. We performed structural analyses on the Pd surface through infrared (IR) spectroscopy of the adsorbed CO molecules.
View Article and Find Full Text PDFThe genetic variation of rice cultivars provides a resource for further varietal improvement through breeding. Some rice varieties are sensitive to benzobicyclon (BBC), a β-triketone herbicide that inhibits 4-hydroxyphenylpyruvate dioxygenase (HPPD). Here we identify a rice gene, (), that confers resistance to BBC and other β-triketone herbicides.
View Article and Find Full Text PDFHigh-temperature stress during the ripening stage leads to quality deterioration due to an increase in chalky grains in brown rice ( L.). In a previous study, we identified a QTL for () using chromosome segment substitution lines of the cultivar 'Habataki' in the cultivar 'Koshihikari' background and narrowed down the locus to a 48-kb region on chromosome 7.
View Article and Find Full Text PDFTocopherol (Toc) and tocotrienol (T3) are abundant in rice bran. Geranylgeranyl reductase (GGR) is an essential enzyme for Toc production that catalyzes the reduction of geranylgeranyl pyrophosphate and geranylgeranyl-chlorophyll. However, we found that a rice mutant line with inactivated Os02g0744900 (OsGGR1/LYL1/OsChl P) gene produces Toc, suggesting that rice plants may carry another enzyme with GGR activity.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2017
The particle size effect of Pd nanoparticles supported on alumina with various crystalline phases on methane combustion was investigated. Pd/θ, α-Al O with weak metal-support interaction showed a volcano-shaped dependence of the catalytic activity on the size of Pd particles, and the catalytic activity of the strongly interacted Pd/γ-Al O increased with the particle size. Based on a structural analysis of Pd nanoparticles using CO adsorption IR spectroscopy and spherical aberration-corrected scanning/transmission electron microscopy, the dependence of catalytic activity on Pd particle size and the alumina crystalline phase was due to the fraction of step sites on Pd particle surface.
View Article and Find Full Text PDFThe γ-isoforms of tocopherols (Tc) and tocotrienols (T3) possess high biological activities in comparison to the α-isoforms. The concentrations of Tc and T3 isoforms in rice (Oriza sativa) was cultivar-dependent. Using chromosome segment substitution lines (CSSLs) and near isogenic lines (NILs) of indica cultivar "Kasalath" in a japonica cultivar "Koshihikari" genetic background, the Kasalath genomic segment on chromosome 2 was determined to be responsible for the high γ-isoform concentration: γ-tocopherol methyltransferase (γ-TMT) was identified as a candidate gene.
View Article and Find Full Text PDFMeasurements of singlet oxygen ((1)O2) quenching rates (kQ (S)) and the relative singlet oxygen absorption capacity (SOAC) values were performed for seven rice bran extracts 1-7, which contained different concentrations of antioxidants (AOs) (such as α-, β-, γ-, and δ-tocopherols and -tocotrienols, three carotenoids (lutein, β-carotene, and zeaxanthin), and γ-oryzanol), in ethanol at 35 °C using UV-vis spectrophotometry. The concentrations of four tocopherols and four tocotrienols, three carotenoids, and γ-oryzanol contained in the extracts were determined using HPLC-MS/MS, UV-HPLC, and UV-vis absorption spectroscopy, respectively. Furthermore, comparisons of kQ (S) (Obsd.
View Article and Find Full Text PDFMature dry seeds contain translatable mRNAs called long-lived mRNAs. Early studies have shown that protein synthesis during the initial phase of seed germination occurs from long-lived mRNAs, without de novo transcription. However, the gene expression systems that generate long-lived mRNAs in seeds are not well understood.
View Article and Find Full Text PDFThe appearance of brown rice grown under high temperature conditions is an important characteristic for improvement in Japanese rice breeding programs. We performed a QTL analysis of the appearance quality of brown rice using chromosome segment substitution lines of the indica cultivar 'Habataki' in the 'Koshihikari' genetic background. A line carrying a 'Habataki' segment on chromosome 7 showed a high percentage of perfect grains produced under high temperature conditions during the ripening period.
View Article and Find Full Text PDFRecently, a new assay method that can quantify the aroxyl radical (ArO•) absorption capacity (ARAC) of antioxidants (AOHs) was proposed. In the present work, the second-order rate constants (ks(Extract)) and ARAC values for the reaction of ArO• with seven kinds of rice bran extracts 1-7, which contain different concentrations of α-, β-, γ-, and δ-tocopherols and -tocotrienols (α-, β-, γ-, and δ-Tocs and -Toc-3s) and γ-oryzanol, were measured in ethanol at 25 °C using stopped-flow spectrophotometry. The ks(Extract) value (1.
View Article and Find Full Text PDFRice (Oryza sativa L.) can produce black grains as well as white. In black rice, the pericarp of the grain accumulates anthocyanin, which has antioxidant activity and is beneficial to human health.
View Article and Find Full Text PDFIncreases in rates of individual leaf photosynthesis (P n) are critical for future increases of rice yields. A previous study, using introgression lines derived from a cross between indica cultivar Habataki, with one of the highest recorded values of P n, and the Japanese elite cultivar Koshihikari, identified four QTLs (qCAR4, qCAR5, qCAR8, and qCAR11) that affect P n. The present study examined the combined effect of qCAR4 and qCAR8 on P n in the genetic background of Koshihikari.
View Article and Find Full Text PDFRice tocotrienol (T3) has gained attention due to its physiological activities (e.g., antiangiogenesis).
View Article and Find Full Text PDFDNA marker-assisted selection appears to be a promising strategy for improving rates of leaf photosynthesis in rice. The rate of leaf photosynthesis was significantly higher in a high-yielding indica variety, Habataki, than in the most popular Japanese variety, Koshihikari, at the full heading stage as a result of the higher level of leaf nitrogen at the same rate of application of nitrogen and the higher stomatal conductance even when the respective levels of leaf nitrogen were the same. The higher leaf nitrogen content of Habataki was caused by the greater accumulation of nitrogen by plants.
View Article and Find Full Text PDFThe use of fertilizer results in tall rice plants that are susceptible to lodging and results in reduced plant yields. In this study, using chromosome segment substitution lines, we identified an effective quantitative trait loci (QTL) for culm strength, which was designated STRONG CULM2 (SCM2). Positional cloning of the gene revealed that SCM2 was identical to ABERRANT PANICLE ORGANIZATION1 (APO1), a gene previously reported to control panicle structure.
View Article and Find Full Text PDFAs rice bran tocotrienol (T3) has been known to have a wide range of physiological functions (e.g., antiangiogenesis), we aimed at developing a T3-rich rice variety for nutraceutical purposes.
View Article and Find Full Text PDFIn order to facilitate the functional analysis of rice genes, we produced about 50,000 insertion lines with the endogenous retrotransposon Tos17. Phenotypes of these lines in the M2 generation were observed in the field and characterized based on 53 phenotype descriptors. Nearly half of the lines showed more than one mutant phenotype.
View Article and Find Full Text PDFSeveral brittle culm mutations of rice (Oryza sativa) causing fragility of plant tissues have been identified genetically but not characterized at a molecular level. We show here that the genes responsible for three distinct brittle mutations of rice, induced by the insertion of the endogenous retrotransposon Tos17, correspond to CesA (cellulose synthase catalytic subunit) genes, OsCesA4, OsCesA7 and OsCesA9. Three CesA genes were expressed in seedlings, culms, premature panicles, and roots but not in mature leaves, and the expression profiles were almost identical among the three genes.
View Article and Find Full Text PDFBecause retrotransposons are the major component of plant genomes, analysis of the target site selection of retrotransposons is important for understanding the structure and evolution of plant genomes. Here, we examined the target site specificity of the rice retrotransposon Tos17, which can be activated by tissue culture. We have produced 47,196 Tos17-induced insertion mutants of rice.
View Article and Find Full Text PDF