We demonstrate universal and programmable three-mode linear-optical operations in the time domain by realizing a scalable dual-loop optical circuit suitable for universal quantum information processing (QIP). The programmability, validity, and deterministic operation of our circuit are demonstrated by performing nine different three-mode operations on squeezed-state pulses, fully characterizing the outputs with variable measurements, and confirming their entanglement. Our circuit can be scaled up just by making the outer loop longer and also extended to universal quantum computers by incorporating feed forward systems.
View Article and Find Full Text PDFA quantum processor to import, process, and export optical quantum states is a common core technology enabling various photonic quantum information processing. However, there has been no photonic processor that is simultaneously universal, scalable, and programmable. Here, we report on an original loop-based single-mode versatile photonic quantum processor that is designed to be universal, scalable, and programmable.
View Article and Find Full Text PDF