Publications by authors named "Kazuma Suzuki"

The mechanism of perovskite film growth is critical for the final morphology and, thus, the performance of the perovskite solar cell. The nano-roughness of compact TiO (c-TiO) fabricated the spray pyrolysis method had a significant effect on the perovskite grain size and perovskite solar cell performance in this work. While spray pyrolysis is a low-cost and straightforward deposition technique suitable for large-scale application, it is influenced by a number of parameters, including (i) alcoholic solvent precursor, (ii) spray temperature, and (iii) annealing temperature.

View Article and Find Full Text PDF

We developed an approximate method for quantum reaction dynamics simulations, namely, a structure-based Gaussian (SBG) expansion approach, where SBG bases for the expansion of the wave function Ψ, expressed by a product of single-atom Cartesian Gaussians centered at the positions of respective nuclei, are mainly placed around critical structures on reaction pathways such as on the intrinsic reaction coordinate (IRC) through a transition state. In the present approach, the "pseudo-lattice points" at which SBGs are deployed are selected in a perturbative manner so as to make moderate the expansion length. We first applied the SBG idea to a two-dimensional quadruple-well model and obtained accurate tunneling splitting values between the lowest four states.

View Article and Find Full Text PDF

Objectives: Daily assessments of swallowing function and interventions such as rehabilitation and dietary adjustments are necessary to improve dysphagia. Cervical auscultation is convenient for health care providers for assessing swallowing ability. Although this method allows for swallowing sound evaluations, sensory evaluations with this method are difficult.

View Article and Find Full Text PDF

Although significant progress has been made in the development of light-emitting materials for organic light-emitting diodes along with the elucidation of emission mechanisms, the electron injection/transport mechanism remains unclear, and the materials used for electron injection/transport have been basically unchanged for more than 20 years. Here, we unravelled the electron injection/transport mechanism by tuning the work function near the cathode to about 2.0 eV using a superbase.

View Article and Find Full Text PDF

The realisation of a cathode with various work functions (WFs) is required to maximise the potential of organic semiconductors that have various electron affinities. However, the barrier-free contact for electrons could only be achieved by using reactive materials, which significantly reduce the environmental stability of organic devices. We show that a stable electrode with various WFs can be produced by utilising the coordination reaction between several phenanthroline derivatives and the electrode.

View Article and Find Full Text PDF

Molecular n-dopants that can lower the electron injection barrier between organic semiconductors and electrodes are essential in present-day organic electronics. However, the development of stable molecular n-dopants remains difficult owing to their low ionization potential, which generally renders them unstable. It is shown that the stable bases widely used in organic synthesis as catalysts can lower the electron injection barrier similar to that in conventional n-doping in organic optoelectronic devices.

View Article and Find Full Text PDF

Inverted organic light-emitting diodes (iOLEDs) without the use of alkali metals have attracted extensive attention owing to the demand for the realization of flexible OLEDs that do not require stringent encapsulation. In this paper, we discuss the correlation between the characteristics of iOLEDs and the energy-level alignment at cathode/organic layer interfaces examined by ultraviolet photoelectron spectroscopy. Two similar electron-transporting materials having different orbital energies, 2,8-bis(diphenylphosphoryl)dibenzo[ b, d]thiophene (PPT) and 2,8-bis(diphenylphosphoryl)dibenzo[ b, d]thiophene sulfone (PPT-S), are inserted between the cathode/polyethyleneimine and the emitting layer in the iOLED.

View Article and Find Full Text PDF

Theoretical studies indicated that C_{60} exposed to linearly polarized intense infrared pulses undergoes periodic cage structural distortions with typical periods around 100 fs (1  fs=10^{-15}  s). Here, we use the laser-driven self-imaging electron diffraction technique, previously developed for atoms and small molecules, to measure laser-induced deformation of C_{60} in an intense 3.6  μm laser field.

View Article and Find Full Text PDF

Background: Color patterns in angiosperm flowers are produced by spatially and temporally restricted deposition of pigments. Identifying the mechanisms responsible for restricted pigment deposition is a topic of broad interest. Some dicots species develop bicolor petals, which are often caused by the post-transcriptional gene silencing (PTGS) of chalcone synthase (CHS) genes.

View Article and Find Full Text PDF

We investigated the high-density CO adsorption phase formed on a Pt(111) surface when exposed to CO gas of pressure ranging from UHV to 100 mTorr using near-ambient-pressure (NAP)-XPS. Combined results from the NAP-XPS measurements and DFT calculations reveal the adsorption structure of CO molecules in the dense CO overlayer, which is stable under realistic conditions.

View Article and Find Full Text PDF

Catalytic CO oxidation reaction on a Pd(100) single-crystal surface under several hundred mTorr pressure conditions has been studied by ambient pressure X-ray photoelectron spectroscopy and mass spectroscopy. In-situ observation of the reaction reveals that two reaction pathways switch over alternatively depending on the surface temperature. At lower temperatures, the Pd(100) surface is covered by CO molecules and the CO2 formation rate is low, indicating CO poisoning.

View Article and Find Full Text PDF