In quantum dot superlattices, wherein quantum dots are periodically arranged, electronic states between adjacent quantum dots are coupled by quantum resonance, which arises from the short-range electronic coupling of wave functions, and thus the formation of minibands is expected. Quantum dot superlattices have the potential to be key materials for new optoelectronic devices, such as highly efficient solar cells and photodetectors. Herein, we report the fabrication of CdTe quantum dot superlattices via the layer-by-layer assembly of positively charged polyelectrolytes and negatively charged CdTe quantum dots.
View Article and Find Full Text PDFSemiconductor quantum dot (QD) superlattices, which are periodically ordered three-dimensional (3D) array structures of QDs, are expected to exhibit novel photo-optical properties arising from the resonant interactions between adjacent QDs. Since the resonant interactions such as long-range dipole-dipole Coulomb coupling and short-range quantum resonance strongly depend on inter-QD nano space, precise control of the nano space is essential for physical understanding of the superlattice, which includes both of nano and bulk scales. Here, we study the pure quantum resonance in the 3D CdTe QD superlattice deposited by a layer-by-layer assembly of positively charged polyelectrolytes and negatively charged CdTe QDs.
View Article and Find Full Text PDF