Controlled arrangement of molecularly thin two-dimensional (2D) materials on a substrate, particularly into precisely organized mono- and multilayer structures, is a key to design a nanodevice using their unique and enhanced physical properties. Several techniques such as mechanical transfer process and Langmuir-Blodgett deposition have been applied for this purpose, but they have severe restrictions for large-scale practical applications, for example, limited processable area and long fabrication time, requiring skilled multistep operations. We report a facile one-pot spin-coating method to realize dense monolayer tiling of various 2D materials, such as graphene and metal oxide nanosheets, within 1 min over a wide area (for example, a 30-mmφ substrate).
View Article and Find Full Text PDFIt has been thought that phosphorus in biominerals made of amorphous calcium carbonate (ACC) might be related to ACC formation, but no such phosphorus-containing compounds have ever been identified. Crustaceans use ACC biominerals in exoskeleton and gastroliths so that they will have easy access to calcium carbonate inside the body before and after molting. We have identified phosphoenolpyruvate and 3-phosphoglycerate, intermediates of the glycolytic pathway, in exoskeleton and gastroliths and found them important for stabilizing ACC.
View Article and Find Full Text PDFMorphology and crystallographic orientations of coccoliths, Pleurochrysis carterae, at the various growth stages were investigated using electron back-scattered diffraction analyses and scanning electron microscope (SEM) stereo-photogrammetry to understand the developments of two different coccolith units, namely V and R units. SEM observation indicates that the immature coccolith units at the earliest stage were not perfectly fixed on the organic base plates and several units were often lacked. The all units showed platy morphology and often lay parallel to the organic base plate.
View Article and Find Full Text PDFThe microstructure and its crystallographic aspect of the shell of a limpet, Lottiakogamogai, have been investigated, as the first step to clarify the mechanism of shell formation in limpet. The shell consists of five distinct layers stacked along the shell thickness direction. Transmission electron microscopy (TEM) with the focused ion beam (FIB) sample preparation technique was primarily adopted, as well as scanning electron microscopy (SEM) with electron back-scattered diffraction (EBSD).
View Article and Find Full Text PDFMarine coccolithophorids (Haptophyceae) produce calcified scales "coccoliths" which are composed of CaCO(3) and coccolith polysaccharides (CP) in the coccolith vesicles. CP was previously reported to be composed of uronic acids and sulfated residues, etc. attached to the polymannose main chain.
View Article and Find Full Text PDFThe mollusk shell is a hard tissue consisting of calcium carbonate crystals and an organic matrix. The nacre of the shell is characterized by a stacked compartment structure with a uniformly oriented c axis of aragonite crystals in each compartment. Using a calcium carbonate-binding assay, we identified an acidic matrix protein, Pif, in the pearl oyster Pinctada fucata that specifically binds to aragonite crystals.
View Article and Find Full Text PDFThe initial formation and subsequent development of larval shells in marine bivalve, Crassostrea nippona were investigated using the FIB-TEM technique. Fourteen hours after fertilization (the trochophore stage), larvae form an incipient shell of 100-150nm thick with a columnar contrast. Selected-area electron diffraction analysis showed a single-crystal aragonite pattern with the c-axis perpendicular to the shell surface.
View Article and Find Full Text PDFThe growth front of nacreous layer, which lies just above the outer prismatic layer, is one of the crucial areas to comprehend the formation of nacreous aragonite. The crystallographic properties of aragonite crystals at the growth front in pearl oyster, Pinctada fucata, were investigated using scanning electron microscopy with electron back-scattered diffraction, and transmission electron microscopy with focused ion beam sample preparation technique. Nano-sized aragonite crystals nucleate with random crystallographic orientation inside the dimples on the surface of the organic matrix that covers the outer prismatic columns.
View Article and Find Full Text PDFElectrical conductivity of titania nanosheets was investigated for a single-layered Langmuir-Blodgett (LB) film deposited onto a comb-type electrode (5 or 10 microm (electrode spacing) x 8 mm (electrode width)). The photoresponsive electrical properties of the film were investigated by irradiating with a Xe lamp under various atmospheric conditions. The atmosphere was controlled by introducing either oxygen or nitrogen gases containing different amounts of water vapor.
View Article and Find Full Text PDFHybrid films composed of amphiphilic molecules and clay particles were constructed by the modified Langmuir-Blodgett (LB) method. Clays used were sodium montmorillonite (denoted as mont) and synthetic smectite containing Co(II) ions in the octahedral sites (denoted as Co). Two kinds of amphiphilic molecules were used-[Ru(dC(18)bpy)(phen)2](ClO4)2 (dC(18)bpy = 4,4'-dioctadecyl-2,2'-bipyridyl and phen = 1,10-phenanthroline) (denoted as Ru) and octadecylammonium choloride (ODAH+Cl- or denoted as ODAH).
View Article and Find Full Text PDFA hybrid film of layered niobate and an organic amphiphile was prepared by the Langmuir-Blodgett (LB) method. Trimethylammonium-exchanged perovskite-type niobates ((CH(3))(3)NHSr(2)Nb(3)O(10)) were exfoliative to form an aqueous suspension. A monolayer of octadecylamine was produced on such an aqueous dispersion as a template for a hybrid film.
View Article and Find Full Text PDFBy measuring the photoconductivity of hybrid LB films of exfoliative layered niobate and octadecylamine, it was evidenced that the film underwent a transition from an insulator to a photosemiconductor during photo-modification treatment by UV light, which was rationalized in terms of the direct contact of inorganic nanosheets achieved by the elimination of organic layers.
View Article and Find Full Text PDFH2 generation during mechanochemical treatment of kaolinite by dry grinding was examined by X-ray diffraction analysis, Fourier transform infrared spectroscopy, and BET surface area measurement. The H2 concentration in the mill pot, measured by gas chromatography, increased with grinding time up to a maximum concentration of 156 ppm (0.35 micromol) after 600 min.
View Article and Find Full Text PDF