Publications by authors named "Kazuko Noda"

Article Synopsis
  • * L-DOPA alone improves motor activity at dosages of 3-7 mg/kg; however, it does not enhance the usage of both forelimbs.
  • * Detailed analysis of brain activity showed that the combination of ifenprodil and L-DOPA significantly reduced c-Fos expression in the subthalamic nucleus, indicating this area is crucial for the anti-parkinsonian effects of NR2B antagonists. *
View Article and Find Full Text PDF

Paclitaxel, one of the chemotherapeutic agents clinically used to treat several types of cancer, produces side effects such as peripheral neuropathy, sensory abnormalities, and hyperalgesia. Since hyperalgesia remains after cessation of paclitaxel therapy and becomes chronic, we hypothesize that alteration in memory and the cognitive process of pain underlies hyperalgesia. To test this hypothesis, we examined whether drug-induced hyperalgesia alters the affective component of pain and the NMDA-NR1 and mGluR1 receptors as a mediator for signal transmission and memory of pain.

View Article and Find Full Text PDF

To test the hypothesis that the cellular mechanism whereby chronic deep brain stimulation of the subthalamic nucleus (STN-DBS) induces the improvement of motor deficits lasting after stimulation in the hemiparkinsonian (hemi-PD) rat involves the NMDA receptor-dependent processes in neurons receiving afferents from the STN, we examined whether the NMDA receptor antagonist prevents the alleviating after-effect of repeated STN-DBS on motor deficits in hemi-PD. The cylinder test was performed before and after repeated STN-DBS over 3 days in hemi-PD that received a unilateral injection of 6-OHDA into the medial forebrain bundle 3 weeks prior to STN-DBS experiments. No significant improvement in the reduced frequency of forelimb use and forelimb-use asymmetry was seen in the cylinder test after the single STN-DBS, while, when the STN-DBS was applied three times at intervals of 24 h, the improvement became apparent and significant only in the reduced frequency of forelimb use (akinesia) after termination of the stimulation, suggesting the alleviating after-effect of chronic stimulation.

View Article and Find Full Text PDF

Synaptic release of the excitatory amino acid glutamate is considered as an important mechanism in the pathogenesis of ischemic brain damage in neonates. Synaptotagmin I is one of exocytosis-related proteins at nerve terminals and considered to accelerate the exocytosis of synaptic vesicles by promoting fusion between the vesicles and plasma membrane. To test the possibility that antisense in vivo knockdown of synaptotagmin I modulates the exocytotic release of glutamate, thus suppressing the excitotoxic intracellular processes leading to neuronal death following ischemia in the neonatal brain, we injected antisense oligodeoxynucleotides (ODNs) targeting synaptotagmin I (0.

View Article and Find Full Text PDF

In view of recent findings that suggest that the nigrostriatal dopamine (DA) system plays a role in motor control and the acquisition of habits and skills, we hypothesized that the striatum-based function underlying the acquisition of skilled behaviors might be more vulnerable to dopamine depletion than the motor control. To test this hypothesis, we investigated whether impaired acquisition of skilled behaviors occurs in a pre-symptomatic stage model of Parkinson's disease (PD). By using the microdialysis method and the 6-OHDA-technique to destroy dopamine neurons, we confirmed that rats with unilateral partial lesions of the nigral dopamine cells by 6-OHDA are suitable for a pre-symptomatic stage model of Parkinson's disease.

View Article and Find Full Text PDF

To examine the role of mGluR1 (a subunit of the group I metabotropic glutamate receptor) in the nociceptive responses of rats following a subcutaneous injection of formalin into the plantar surface of the hind paw, we delivered antisense oligonucleotides (ODNs) against mGluR1 into the rat lumbar spinal cord (L3-L5) intrathecally using an HVJ-liposome-mediated gene transfer method. Rats treated with a single injection of mGluR1 antisense ODNs into the intrathecal space of the lumbar spinal cord showed a marked reduction of the early-sustained phase of formalin-induced nociceptive responses, but not of their acute phase. The reduction of nociceptive behavioral responses became apparent at day 2 after the antisense treatment and lasted for 2 days.

View Article and Find Full Text PDF