In drug discovery research, the selection of promising binding sites and understanding the binding mode of compounds are crucial fundamental studies. The current understanding of the proteins-ligand binding model extends beyond the simple lock and key model to include the induced-fit model, which alters the conformation to match the shape of the ligand, and the pre-existing equilibrium model, selectively binding structures with high binding affinity from a diverse ensemble of proteins. Although methods for detecting target protein binding sites and virtual screening techniques using docking simulation are well-established, with numerous studies reported, they only consider a very limited number of structures in the diverse ensemble of proteins, as these methods are applied to a single structure.
View Article and Find Full Text PDFA model is proposed for the beach process of buoyant marine plastics, specifically its beaching and backwashing, by introducing beaching and backwashing diffusion coefficients and the onshore-offshore advection-diffusion equations of plastics for the upper layers in the beach and adjacent coastal sea. The backwashing diffusion coefficient was estimated from the average residence time of the beached plastics and the beach width, and then the beaching diffusion coefficient was estimated from the flux-balance assumption between the beaching and backwashing fluxes. Finite difference calculations in the staggered-grid system demonstrated that the amount of beached plastics responds as predicted by the linear system analysis when the beach had an exponential decay type of unit impulse response regardless of the ratio between the residence time and the period of beaching flux fluctuation from the nearshore.
View Article and Find Full Text PDFWe had experienced 117 Japanese Fabry patients (72 males and 45 females) from 1977 to 2006, and then we generated an improved Fabry analysis system in 2007 and have found 196 ones (95 males and 101 females) since then. In this study, we summarized the data of the patients and tried to elucidate the molecular and biochemical characteristics of Japanese Fabry patients. Gene analysis revealed various mutations, including missense mutations (56.
View Article and Find Full Text PDFChagas disease results from infection by Trypanosoma cruzi and is a neglected tropical disease (NTD). Although some treatment drugs are available, their use is associated with severe problems, including adverse effects and limited effectiveness during the chronic disease phase. To develop a novel anti-Chagas drug, we virtually screened 4.
View Article and Find Full Text PDFResidence times of microplastics were estimated based on the dependence of meso- and macrolitter residence times on their upward terminal velocities (UTVs) in the ocean obtained by one- and two-year mark-recapture experiments conducted on Wadahama Beach, Nii-jima Island, Japan. A significant linear relationship between the residence time and UTV was found in the velocity range of about 0.3-0.
View Article and Find Full Text PDFMucopolysaccharidosis type II (MPS II, Hunter syndrome) is an X-linked genetic disorder caused by a deficiency of iduronate 2-sulfatase (IDS), and missense mutations comprising about 30% of the mutations responsible for MPS II result in heterogeneous phenotypes ranging from the severe to the attenuated form. To elucidate the basis of MPS II from the structural viewpoint, we built structural models of the wild type and mutant IDS proteins resulting from 131 missense mutations (phenotypes: 67 severe and 64 attenuated), and analyzed the influence of each amino acid substitution on the IDS structure by calculating the accessible surface area, the number of atoms affected and the root-mean-square distance. The results revealed that the amino acid substitutions causing MPS II were widely spread over the enzyme molecule and that the structural changes of the enzyme protein were generally larger in the severe group than in the attenuated one.
View Article and Find Full Text PDFMucopolysaccharidosis type II (MPS II: also called as Hunter syndrome) is an X-linked recessive lysosomal storage disorder characterized by the accumulation of extracellular glycosaminoglycans due to the deficiency of the enzyme iduronate-2-sulfatase (IDS). Previous observations suggested that MPS II can be classified into two distinct disease subtypes: (1) severe type of MPS II involves a decline in the cognitive ability of a patient and (2) attenuated type of MPS II exhibits no such intellectual phenotype. To determine whether such disease subtypes of MPS II could be explained by genetic diagnosis, we analyzed mutations in the IDS gene of 65 patients suffering from MPS II among the Japanese population who were diagnosed with both the accumulation of urinary glycosaminoglycans and a decrease in their IDS enzyme activity between 2004 and 2014.
View Article and Find Full Text PDFKrabbe disease is an autosomal recessive leukodystrophy caused by a deficiency of the galactocerebrosidase (GALC) enzyme. Hematopoietic stem cells transplantation is the only available treatment option for pre-symptomatic patients. We have previously reported the chaperone effect of N-octyl-4-epi-β-valienamine (NOEV) on mutant GM1 β-galactosidase proteins, and in a murine GM1-gangliosidosis model.
View Article and Find Full Text PDFBackground: Chagas disease, caused by the parasite Trypanosoma cruzi, is a neglected tropical disease that causes severe human health problems. To develop a new chemotherapeutic agent for the treatment of Chagas disease, we predicted a pharmacophore model for T. cruzi dihydroorotate dehydrogenase (TcDHODH) by fragment molecular orbital (FMO) calculation for orotate, oxonate, and 43 orotate derivatives.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2015
Hydrogen sulfide (H2S) is a gaseous regulatory factor produced by several enzymes, and plays a pivotal role in processes such as proliferation or vasodilation. Recent reports demonstrated the physiological and pathophysiological functions of H2S in neurons. PTEN is a target of nitric oxide (NO) or hydrogen peroxide, and the oxidative modification of cysteine (Cys) residue(s) attenuates its enzymatic activity.
View Article and Find Full Text PDFWe report the case of a 42-yearold woman diagnosed with heterozygous Fabry disease (FD) due to a novel α-galactosidase A Pro210Ser mutation and exhibiting a unique distribution of synaptopodin within podocytes. The patient was referred to our hospital with moderate proteinuria, and a renal biopsy was performed. Light microscopic examination of the specimen revealed diffuse global enlargement of podocytes, which also showed foamy changes.
View Article and Find Full Text PDFFabry disease is an X-linked genetic disorder characterized by deficient activity of α-galactosidase A (GLA) and accumulation of glycolipids, and various GLA gene mutations lead to a wide range of clinical phenotypes from the classic form to the later-onset one. To investigate the biochemical heterogeneity and elucidate the basis of the disease using available clinical samples, we measured GLA activity, GLA protein and accumulated globotriaosylsphingosine (Lyso-Gb3), a biomarker of this disease, in plasma samples from Fabry patients. The analysis revealed that both the enzyme activity and the protein level were apparently decreased, and the enzyme activity was well correlated with the protein level in many Fabry patients.
View Article and Find Full Text PDFAllelic mutations, predominantly missense ones, of the α-l-iduronidase (IDUA) gene cause mucopolysaccharidosis type I (MPS I), which exhibits heterogeneous phenotypes. These phenotypes are basically classified into severe, intermediate, and attenuated types. We previously examined the structural changes in IDUA due to MPS I by homology modeling, but the reliability was limited because of the low sequence identity.
View Article and Find Full Text PDFMissense mutations in the α-galactosidase A (GLA) gene comprising the majority of mutations responsible for Fabry disease result in heterogeneous phenotypes ranging from the early onset severe "classic" form to the "later-onset" milder form. To elucidate the molecular basis of Fabry disease from the viewpoint of structural biology, we comprehensively examined the effects of different substitutions at the same residue in the amino acid sequence of GLA on the structural change in the enzyme molecule and the clinical phenotype by calculating the number of atoms affected and the root-mean-square-distance value, and by coloring of the atoms influenced by the amino acid replacements. The results revealed that the severity of the structural change influences the disease progression, i.
View Article and Find Full Text PDFKrabbe disease is an autosomal recessive leukodystrophy caused by the deficiency of the galactocerebrosidase (GALC) enzyme. It is pathologically characterized by demyelination of the central and peripheral nervous systems by accumulation of galactosylsphingosine. To date, more than 120 mutations in the GALC gene have been reported worldwide and genotype-phenotype correlations have been reported in some types of mutations.
View Article and Find Full Text PDFThe growing power of central processing units (CPU) has made it possible to use quantum mechanical (QM) calculations for in silico drug discovery. However, limited CPU power makes large-scale in silico screening such as virtual screening with QM calculations a challenge. Recently, general-purpose computing on graphics processing units (GPGPU) has offered an alternative, because of its significantly accelerated computational time over CPU.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2013
N-glycosylation is a major posttranslational modification that endows proteins with various functions. It is established that N-glycans are essential for the correct folding and stability of some enzymes; however, the actual effects of N-glycans on their activities are poorly understood. Here, we show that human α-l-iduronidase (hIDUA), of which a dysfunction causes accumulation of dermatan/heparan sulfate leading to mucopolysaccharidosis type I, uses its own N-glycan as a substrate binding and catalytic module.
View Article and Find Full Text PDFIntroduction: G protein-coupled receptors (GPCRs) are integral membrane proteins which contain seven-transmembrane-spanning alpha-helices. GPCR-mediated signaling has been associated with various human diseases, positioning GPCRs as attractive targets in the drug discovery field. Recently, through advances in protein engineering and crystallography, the number of resolved GPCR structures has increased dramatically.
View Article and Find Full Text PDFThe ever-increasing rate of drug discovery data has complicated data analysis and potentially compromised data quality due to factors such as data handling errors. Parallel to this concern is the rise in blatant scientific misconduct. Combined, these problems highlight the importance of developing a method that can be used to systematically assess data quality.
View Article and Find Full Text PDFSeveral p38 MAPK inhibitors have been shown to effectively block the production of cytokines such as IL-1β, TNFα, and IL-6. Inhibitors of p38 MAP kinase therefore have significant therapeutic potential for the treatment of autoimmune disease. Compound 2a was identified as a potent TNFα production inhibitor in vitro but suffered from poor oral bioavailability.
View Article and Find Full Text PDFRecently, plasma globotriaosylsphingosine (lyso-Gb3) has attracted attention as a biomarker of Fabry disease. However, we found a subset of Fabry disease patients who did not show any increase in the plasma lyso-Gb3 concentration, although other patients exhibited apparent enhancement of it. This subset predominantly exhibited the clinical phenotype of later-onset Fabry disease, and gene analysis revealed that the patients harbored the M296I mutation common to Japanese Fabry patients.
View Article and Find Full Text PDFTelmisartan, a selective angiotensin II type 1 receptor blocker, has recently been shown to act as a partial agonist for peroxisome proliferator-activated receptor gamma (PPARγ). To understand how telmisartan partially activates PPARγ, we determined the ternary complex structure of PPARγ, telmisartan, and a coactivator peptide from steroid receptor coactivator-1 at a resolution of 2.18 Å.
View Article and Find Full Text PDFMucopolysaccharidosis type VI (MPS VI) is a genetic disorder caused by a deficiency of arylsulfatase B (ARSB). In our previous study, we investigated the structural changes in ARSB caused by amino acid substitutions associated with MPS VI, and revealed that such structural changes in ARSB were correlated with the clinical phenotypes. To the best of our knowledge, there is no database containing the structures of mutant ARSBs.
View Article and Find Full Text PDFRecently, male subjects harboring the c.196G>C nucleotide change which leads to the E66Q enzyme having low α-galactosidase A (GLA) activity have been identified at an unexpectedly high frequency on Japanese and Korean screening for Fabry disease involving dry blood spots and plasma/serum samples. Individuals with the E66Q enzyme have been suspected to have the later-onset Fabry disease phenotype leading to renal and cardiac disease.
View Article and Find Full Text PDFMol Genet Metab
February 2012
To elucidate the bases of Wolman disease (WD) and cholesteryl ester storage disease (CESD) from the viewpoint of enzyme structure, we constructed a structural model of human lysosomal acid lipase (LAL) using molecular modeling software Modeller. The results revealed that the residues responsible for WD/CESD tend to be less solvent-accessible than others. Then, we examined the structural changes in the LAL protein caused by the WD/CESD mutations, using molecular modeling software TINKER.
View Article and Find Full Text PDF