Photochromism through excited-state intermolecular proton transfer (ESInterPT) processes based on keto-enol tautomerization was found in phenazine-2,3-diol PD1 and its monoalkoxy derivative PD2 in a glassy matrix at 77 K: the colorless solutions of enol forms PD1-E and PD2-E at 298 K transformed into orange-colored solutions of keto forms PD1-K and PD2-K upon photoirradiation ( = 385 nm) at 77 K. Furthermore, this report is the first to achieve the single-crystal X-ray structural analyses of phenazine-2,3-diol PD1 and its monoalkoxy derivative PD2, since the report on the synthesis of PD1 70 years ago. Indeed, it was found that PD1 and PD2 molecules exist in the keto form (PD1-K) and the enol form (PD2-E), respectively, in the crystal, and the neighboring PD1-K and PD2-E molecules are linked by one-dimensional intermolecular NH⋯O and OH⋯N hydrogen bonding, respectively.
View Article and Find Full Text PDFPhenazine-2,3-diol-based dyes, KY-1Na and KY-2Na bearing one and two carboxylic acid sodium salts, respectively, have been newly developed as water-soluble photosensitizers (PSs) possessing the ability to generate singlet oxygen (O). In order to evaluate the solubility of KY-1Na and KY-2Na in water, the hydrophobicity/hydrophilicity of the two PSs was investigated by experimental measurement of the logarithms (log ) of the 1-octanol/water partition coefficient () for the PS. The log values of both KY-1Na and KY-2Na were determined to be -0.
View Article and Find Full Text PDFMolecular photoswitches have been widely used as molecular machines in various fields due to the small structures and simple motions generated in reversible isomerization. However, common photoswitches, as represented by azobenzene (AB), cannot combine both large motions and high thermal stability, which are critically important for some practical applications in addition to high photoisomerization yields. Here, we focus on a promising photoswitch, stiff stilbene (SS), and its derivative, sterically hindered SS (HSS).
View Article and Find Full Text PDFThe (D-π)-type fluorescent dye with two (diphenylamino)carbazole-thiophene units as D (electron-donating group)-π (π-conjugated bridge) moiety and the (D-π)Ph-type fluorescent dye with the two D-π moieties connected through a phenyl ring were derived by oxidative homocoupling of a stannyl D-π unit and Stille coupling of a stannyl D-π unit with 1,3-diiodobenzene, respectively. Their optical and electrochemical properties were investigated by photoabsorption and fluorescence spectroscopy, time-resolved fluorescence spectroscopy, cyclic voltammetry (CV) and molecular orbital (MO) calculations. In toluene the photoabsorption and fluorescence maximum wavelengths (λ and λ) of appear in a longer wavelength region than those of .
View Article and Find Full Text PDFA propeller-structured 3,5,8-trithienyl-BODIPY-type pyridine-boron trifluoride complex, ST-3-BF, which has three units of 2-(pyridin-4-yl)-3-(thiophen-2-yl)acrylonitrile at the 3-, 5-, and 8-positions on the BODIPY skeleton, was designed and developed as an intramolecular charge transfer (ICT)-type optical sensor for the detection of a trace amount of water in acetonitrile. The characterization of ST-3-BF was successfully determined by FTIR, H and B NMR measurements, high-resolution mass spectrometry (HRMS) analysis, thermogravimetry-differential thermal analysis (TG-DTA), photoabsorption and fluorescence spectral measurements, and density functional theory (DFT) calculations. ST-3-BF showed a broad photoabsorption band in the range of 600 to 800 nm, which is assigned to the S → S transition of the BODIPY skeleton with the expanded π-conjugated system over the 2-(pyridin-4-yl)-3-(thiophen-2-yl)acrylonitrile units at the 3-, 5-, and 8-positions onto the BODIPY core.
View Article and Find Full Text PDF