This study investigated the effect of aging on mitochondria in granulosa cells (GCs) collected from the antral follicles of young and aged cows (25-50 months and over 140 months in age, respectively). When GCs were cultured under 20% O for 4 days, mitochondrial DNA copy number (Mt-number), determined by real-time PCR, increased throughout the culture period, and the extent of increase was greater in the GCs of young cows than in those of old cows. In a second experiment, GCs were cultured under 20% O for 24 h.
View Article and Find Full Text PDFGranulosa cells (GCs) contribute to oocyte development. The present study addressed the effect of cryopreservation on the ability of GCs to support oocyte development. GCs were collected from antral follicles.
View Article and Find Full Text PDFSeveral studies have proposed that cell-free DNA (cfDNA) is a potential biomarker present in follicular fluid (FF) for oocyte quality. Recently we reported that mitochondria-derived cfDNA (mt-cfDNA) closely reflects the amount of cfDNA in FFs. The present study investigated the mechanism regulating mt-cfDNA secretion from porcine granulosa cells.
View Article and Find Full Text PDFThis study evaluated the effects of cryopreservation by slow freezing on the mitochondrial function, DNA integrity, and developmental ability of bovine embryos and examined whether resveratrol treatment of the frozen-thawed blastocysts improved embryonic viability. In vitro produced bovine embryos were subjected to slow freezing. After thawing, the ATP content and mitochondrial DNA integrity (mtDNA), determined by real-time PCR targeting short and long mitochondrial sequences, was found to be lower in frozen-thawed embryos than in fresh embryos, and mtDNA copy number was significantly reduced during the 24-hr incubation post warming.
View Article and Find Full Text PDFPurpose: Granulosa cell (GC) number in follicles is a simple characteristic of follicles. The present study examined the hypothesis that follicular fluid (FF) determines GC number and oocyte developmental ability and revealed the molecular background determining the number of follicular GCs.
Methods: FF was collected from antral follicles (3-5 mm in diameter), after which the number of GCs per follicle was determined for each donor gilt using real time PCR targeting single copy gene.
Purpose: The effect of supplementing maturation medium with follicular fluid (FF) was examined according to its non-esterified fatty acid (NEFA) content or with a fatty acid mixture (FA-Mix) on the developmental competence of oocytes, as well as the mitochondrial quality and quantity in the oocytes and cumulus cells.
Method: Porcine oocytes from a slaughterhouse were used.
Results: The FF or FA-Mix in maturation medium increased the lipid content in both the oocytes and the cumulus cells, but the adenosine triphosphate content was differentially affected.
This study examined the concentration of cell-free mitochondrial DNA (cf-mtDNA) in porcine follicular fluid (FF) and explored whether the cfDNA level in the culture medium could reflect mitochondrial dysfunction in cumulus cell-oocyte complexes (COCs). cfDNA concentration was higher in the fluid of small-sized follicles, compared to that in larger follicles. The length of cfDNA ranged from short (152 bp) to long (1,914 bp) mtDNA in FF, detected by polymerase chain reaction (PCR).
View Article and Find Full Text PDFMitochondrial quality control is important for maintaining cellular and oocyte viability. In addition, aging affects mitochondrial quality in many cell types. In the present study, we examined how aging affects oocyte mitochondrial biogenesis and degeneration in response to induced mitochondrial dysfunction.
View Article and Find Full Text PDFOocytes and granulosa cells rely primarily on mitochondrial respiration and glycolysis for energy production, respectively. The present study examined the effect of mitochondrial inhibitors on the ATP contents of oocytes and granulosa cells. Cumulus cell-oocyte complexes (COCs) and granulosa cells (GCs) were collected from the antral follicles of porcine ovaries.
View Article and Find Full Text PDF