Publications by authors named "Kazuki Imada"

In Schizosaccharomyces pombe, ecl family genes are induced by several signals, such as starvation of various nutrients, including sulfur, amino acids and Mg2+, and environmental stress, including heat or oxidative stress. These genes mediate appropriate cellular responses and contribute to the maintenance of cell viability and induction of sexual differentiation. Although this yeast has three ecl family genes with overlapping functions, any environmental conditions that induce ecl3+ remain unidentified.

View Article and Find Full Text PDF

The fission yeast Schizosaccharomyces pombe employs two main strategies to adapt to the environment and survive when starved for nutrients. The strategies employ sporulation via sexual differentiation and extension of the chronological lifespan. When a cell is exposed to nutrient starvation in the presence of a cell of the opposite sex, the cells undergo fusion through conjugation and sporulation through meiosis.

View Article and Find Full Text PDF

In , the spore wall confers strong resistance against external stress. During meiosis II, the double-layered intracellular forespore membrane (FSM) forms de novo and encapsulates the nucleus. Eventually, the inner FSM layer becomes the plasma membrane of the spore, while the outer layer breaks down.

View Article and Find Full Text PDF

Fission yeast Ypt2, an orthologue of the mammalian small GTPase Rab8, is responsible for post-Golgi membrane trafficking. During meiosis, Ypt2 localizes at the spindle pole body (SPB), where it regulates biogenesis of the spore plasma membrane. Recruitment of Ypt2 to the SPB is dependent on its meiosis-specific GDP/GTP exchange factor (GEF), the SPB-resident protein Spo13.

View Article and Find Full Text PDF

During fission yeast sporulation, a membrane compartment called the forespore membrane (FSM) is newly formed on the spindle pole body (SPB). The FSM expands by membrane vesicle fusion, encapsulates the daughter nucleus resulting from meiosis, and eventually matures into the plasma membrane of the spore. Although many of the genes involved in FSM formation have been identified, its molecular mechanism is not fully understood.

View Article and Find Full Text PDF

Sporulation, gametogenesis in yeast, consists of meiotic nuclear division and spore morphogenesis. In the fission yeast Schizosaccharomyces pombe, the four haploid nuclei produced after meiosis II are encapsulated by the forespore membrane (FSM), which is newly synthesized from spindle pole bodies (SPBs) in the cytoplasm of the mother cell as spore precursors. Although the coordination between meiosis and FSM assembly is vital for proper sporulation, the underlying mechanism remains unclear.

View Article and Find Full Text PDF

Dissolving microneedles (DMs) were applied to lidocaine for local anesthesia of the skin. Three DM array chips were prepared where lidocaine was localized at the acral portion of DMs (type 1), loaded in whole DMs (type 2), and lidocaine was loaded both in whole DMs and the chip (type 3). DM chips were 15-mm diameter with 225 DMs, each 500-μm long with a 300-μm diameter base.

View Article and Find Full Text PDF

Synaptobrevin, also called vesicle-associated membrane protein (VAMP), is a component of the plasma membrane N-methylmaleimide-sensitive factor attachment protein receptor (SNARE) complex, which plays a key role in intracellular membrane fusion. Previous studies have revealed that, similar to synaptobrevin in other organisms, the fission yeast synaptobrevin ortholog Syb1 associates with post-Golgi secretory vesicles and is essential for cytokinesis and cell elongation. Here, we report that Syb1 has a role in sporulation.

View Article and Find Full Text PDF