Publications by authors named "Kazuhito Honjo"

Unlike Fc receptors for switched immunoglobulin (Ig) isotypes, Fc receptor for IgM (FcµR) is selectively expressed by lymphocytes. The ablation of the FcµR gene in mice impairs B cell tolerance as evidenced by concomitant production of autoantibodies of IgM and IgG isotypes. In this essay, we reiterate the autoimmune phenotypes observed in mutant mice, ie IgM homeostasis, dysregulated humoral immune responses including autoantibodies, and Mott cell formation.

View Article and Find Full Text PDF
Article Synopsis
  • - The approach to treating B cell malignancies has significantly changed due to immunotherapy targeting surface proteins and inhibiting crucial signaling pathways, highlighting the importance of B cell receptor signaling in these cancers.
  • - FCRL1, a member of the Fc receptor-like gene family, is mainly found on naïve and memory B cells, and it plays a critical role in B cell signaling and immune responses by aiding in the formation of the B cell receptor signalosome.
  • - Recent research suggests that FCRL1 is often over-expressed in mature B cell leukemias and lymphomas, making it a valuable biomarker and a potential therapeutic target worth investigating further.
View Article and Find Full Text PDF

Background: Patients with chronic lymphocytic leukemia (CLL) have reduced seroconversion rates and lower binding antibody (Ab) and neutralizing antibody (NAb) titers than healthy individuals following Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) mRNA vaccination. Here, we dissected vaccine-mediated humoral and cellular responses to understand the mechanisms underlying CLL-induced immune dysfunction.

Methods And Findings: We performed a prospective observational study in SARS-CoV-2 infection-naïve CLL patients (n = 95) and healthy controls (n = 30) who were vaccinated between December 2020 and June 2021.

View Article and Find Full Text PDF

In previous studies, Mott cells, an unusual form of plasma cells containing Ig-inclusion bodies, were frequently observed in peripheral lymphoid tissues in our IgM Fc receptor (FcμR)-deficient (KO) mouse strain. Because of discrepancies in the reported phenotypes of different Fcmr KO mouse strains, we here examined two additional available mutant strains and confirmed that such enhanced Mott-cell formation was a general phenomenon associated with FcμR deficiency. Splenic B cells from Fcmr KO mice clearly generated more Mott cells than those from WT mice when stimulated in vitro with LPS alone or a B-1, but not B-2, activation cocktail.

View Article and Find Full Text PDF

Chronic lymphocytic leukemia (CLL) patients have lower seroconversion rates and antibody titers following SARS-CoV-2 vaccination, but the reasons for this diminished response are poorly understood. Here, we studied humoral and cellular responses in 95 CLL patients and 30 healthy controls after two BNT162b2 or mRNA-2173 mRNA immunizations. We found that 42% of CLL vaccinees developed SARS-CoV-2-specific binding and neutralizing antibodies (NAbs), while 32% had no response.

View Article and Find Full Text PDF

Quantification of the anti-SARS-CoV-2 antibody response has proven to be a prominent diagnostic tool during the COVID-19 pandemic. Antibody measurements have aided in the determination of humoral protection following infection or vaccination and will likely be essential for predicting the prevalence of population level immunity over the next several years. Despite widespread use, current tests remain limited in part, because antibody capture is accomplished through the use of complete spike and nucleocapsid proteins that contain significant regions of overlap with common circulating coronaviruses.

View Article and Find Full Text PDF

Both non-immune "natural" and antigen-induced "immune" IgM are important for protection against pathogens and for regulation of immune responses to self-antigens. Since the bona fide IgM Fc receptor (FcµR) was identified in humans by a functional cloning strategy in 2009, the roles of FcµR in these IgM effector functions have begun to be explored. In this short essay, we describe the differences between human and mouse FcµRs in terms of their identification processes, cellular distributions and ligand binding activities with emphasis on our recent findings from the mutational analysis of human FcµR.

View Article and Find Full Text PDF

Convalescent plasma (CP) is widely used to treat COVID-19, but without formal evidence of efficacy. Here, we report the beneficial effects of CP in a severely ill COVID-19 patient with prolonged pneumonia and advanced chronic lymphocytic leukemia (CLL), who was unable to generate an antiviral antibody response of her own. On day 33 after becoming symptomatic, the patient received CP containing high-titer (ID > 5,000) neutralizing antibodies (NAbs), defervesced, and improved clinically within 48 h and was discharged on day 37.

View Article and Find Full Text PDF

B-1a cells produce "natural" antibodies (Abs) to neutralize pathogens and clear neo self-antigens, but the fundamental selection mechanisms that shape their polyreactive repertoires are poorly understood. Here, we identified a B cell progenitor subset defined by Fc receptor-like 6 (FCRL6) expression, harboring innate-like defense, migration, and differentiation properties conducive for natural Ab generation. Compared to FCRL6 pro B cells, the repressed mitotic, DNA damage repair, and signaling activity of FCRL6 progenitors, yielded V repertoires with biased distal segment accessibility, constrained diversity, and hydrophobic and charged CDR-H3 sequences.

View Article and Find Full Text PDF

It is now evident from studies of mice unable to secrete IgM that both non-immune "natural" and antigen-induced "immune" IgM are important for protection against pathogens and for regulation of immune responses to self-antigens. Since identification of its Fc receptor (FcμR) by a functional cloning strategy in 2009, the roles of FcμR in these IgM effector functions have begun to be explored. Unlike Fc receptors for switched Ig isotypes (e.

View Article and Find Full Text PDF

Since the bona fide Fc receptor for IgM antibody (FcµR) was identified eight years ago, much progress has been made in defining its biochemical nature, cellular distribution, and effector function. However, there are clearly conflicting results, especially about the cellular distribution and function of murine FcµR. In this short article, we will discuss recent findings from us and other investigators along with our interpretations and comments that may help to resolve the existing puzzles and should open new avenues of investigation.

View Article and Find Full Text PDF

The IgM Fc receptor (FcμR) is the newest FcR, and coligation of FcμR and Fas/CD95 on Jurkat cells with agonistic IgM anti-Fas mAb was shown to inhibit Fas-induced apoptosis. The ligand-binding activity of human FcμR was further examined. FcμR-mediated protection from apoptosis was partially blocked by addition of 10(4) molar excess of IgM or its soluble immune complexes, but it could be inhibited by addition of 10-fold excess of IgM anti-CD2 mAb.

View Article and Find Full Text PDF

A panel of six different murine hybridoma clones secreting IgG monoclonal antibodies (MAbs) specific for the human IgM Fc receptor (FcμR) was generated. All MAbs specifically precipitated a major protein of ∼60 kDa from membrane lysates of FcμR-bearing, but not FcμR-negative, cells as did IgM-ligands. Pre-incubation of membrane lysate of FcμR-bearing cells with these MAbs completely removed the ∼60 kDa IgM-reactive protein.

View Article and Find Full Text PDF

IgM is the first Ig isotype to appear during phylogeny, ontogeny and the immune response. The importance of both pre-immune "natural" and antigen-induced "immune" IgM antibodies in immune responses to pathogens and self-antigens has been established by studies of mutant mice deficient in IgM secretion. Effector proteins interacting with the Fc portion of IgM, such as complement and complement receptors, have thus far been proposed, but fail to fully account for the IgM-mediated immune protection and regulation of immune responses.

View Article and Find Full Text PDF

The IgM-Fc receptor (FcμR) is involved in IgM homeostasis as evidenced by increased pre-immune serum IgM and natural auto-antibodies of both IgM and IgG isotypes in Fcmr-deficient C57BL/6 (B6) mice. To determine the impact of Fcmr-ablation on autoimmunity, we introduced the Fcmr null mutation onto the Fas-deficient autoimmune-prone B6.MRL Fas (lpr/lpr) mouse background (B6/lpr).

View Article and Find Full Text PDF

IgM exists as both a monomer on the surface of B cells and a pentamer secreted by plasma cells. Both pre-immune "natural" and antigen-induced "immune" IgM antibodies are important for protective immunity and for immune regulation of autoimmune processes by recognizing pathogens and self-antigens. Effector proteins interacting with the Fc portion of IgM, such as complement and complement receptors, have thus far been proposed but fail to fully account for the IgM-mediated protection and regulation.

View Article and Find Full Text PDF

Cell surface Fc receptor for IgM antibody (FcμR) is the most recently identified member among FcRs. We determined the cellular distribution of mouse FcμR and the functional consequences of Fcmr disruption. Surface FcμR expression was restricted to B-lineage cells, from immature B to plasma cells, except for a transient down-modulation during germinal center reactions.

View Article and Find Full Text PDF

CD4(+)CD25(+) regulatory T cells (Tregs) inhibit immune responses to a variety of Ags, but their specificity and mechanism of suppression are controversial. This controversy is largely because many studies focused on natural Tregs with undefined specificities and suppression has frequently been measured on polyclonal T cell responses. To address the issue of specificity further, we have bred K(d)-specific, CD4(+) TCR (TCR75) transgenic mice to Foxp3(gfp) knockin reporter mice to permit sorting of Tregs with a known specificity.

View Article and Find Full Text PDF

Although CD4+CD25+FoxP3+ regulatory T cells play a role in allograft tolerance, the role of CD8+ cells with immunosuppressive function is less clear. To address this issue, spleen cells from Rag-1-deficient TCR transgenic (Tg) mice expressing a receptor for ovalbumin (OVA) in the context of MHC class I (OT1) were activated with OVA expressing antigen-presenting cell (APC) in the presence or absence of exogenous transforming growth factor beta (TGFbeta). TGFbeta inhibited the expression of IFN-gamma, granzyme B and the lytic activity of the OT1 T cells while inducing FoxP3 expression in 5-15% of the cells.

View Article and Find Full Text PDF

T cells from TCR transgenic mice, expressing receptors specific for an allogeneic MHC class I peptide, were used to track T cell activation and migration in normal adoptive recipients that were subsequently transplanted with heterotopic hearts that were syngeneic except for a transgenic MHC class I antigen. T cells rapidly disappeared from the blood into the lymphoid tissues where they were activated within one day after transplantation. T cells initially formed discrete clusters in the spleen and lymph nodes.

View Article and Find Full Text PDF

Understanding the mechanisms of rejection of organs transplanted between unrelated individuals is confounded by the complexity of the alloantigens and the diversity of T cells responding to these alloantigens. To circumvent these problems, we developed a transgenic (Tg) C57BL/6 model system in which the T-cell receptor (TCR) expressed by CD4 T cells is specific for a defined allogeneic H-2Kd peptide and the cardiac donor expressed H-2Kd as a transgene on the C57BL/6 background (B6.Kd).

View Article and Find Full Text PDF