Publications by authors named "Kazuhisa Kashimoto"

Article Synopsis
  • * Administration of IK312532 via dry powder inhaler (DPI) significantly reduces the binding of VIP to lung receptors, indicating that it occupies these receptors and persists in effect for at least 2 hours post-administration.
  • * The peptide also shows potential in reducing inflammation by suppressing the accumulation of immune cells in the bronchiolar mucosa, suggesting that IK312532 could be a promising treatment for lung-related conditions such as asthma.
View Article and Find Full Text PDF

Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) act as neurotransmitters in numerous biological responses. We previously reported that the replacement of Lys by Arg, and Met by Leu in VIP (IK312532; [Arg15, 20, 21, Leu17]-VIP) resulted in a significant improvement in metabolic stability and biological activity. In the present study, we investigated the effect of VIP and its related peptides including long-acting VIP derivative (IK312532) and PACAP27 on the cytotoxicity of cigarette smoke extract (CSE), a causative factor of chronic obstructive pulmonary disease (COPD), in rat alveolar L2 cells.

View Article and Find Full Text PDF

We compared the relaxant effect of original pituitary adenylate cyclase-activating peptide (PACAP)1-27 with that of a newly developed, synthetic PACAP1-27 analogue, [Arg15,20,21 Leu17]-PACAP-Gly-Lys-Arg-NH2, in human bronchi in vitro (n=4-5 in each group). Using precontraction by carbachol (0.1 microM), cumulative administration of PACAP1-27 and salbutamol caused concentration-dependent smooth muscle relaxation with similar potencies and maximum relaxant effects.

View Article and Find Full Text PDF

Purpose: Some therapeutic peptides exhibit amyloidogenic properties that cause insolubility and cytotoxicity against neuronal cells in vitro. Here, we characterize the conformational change in monomeric therapeutic peptide to its fibrillar aggregate in order to prevent amyloidogenic formation during clinical application.

Methods: Therapeutic peptides including glucagon, porcine secretin, and salmon calcitonin were dissolved in acidic solution at concentrations ranging from 1 mg/ml to 80 mg/ml and then aged at 37 degrees C.

View Article and Find Full Text PDF
Article Synopsis
  • The conformational properties of vasoactive intestinal peptide (VIP) include a crucial N-terminal randomized structure and a C-terminal long alpha-helical structure, both affecting its receptor selectivity.
  • VIP analogues were chemically synthesized and tested for their alpha-helical content and biological activities, revealing that the alpha-helix is significantly linked to their effectiveness in relaxing murine stomach and receptor binding.
  • Key findings indicate that the alpha-helical structure requires 14 specific amino acids in VIP, and disruptions in the mid-chain or N-terminus negatively impact biological functions, highlighting the importance of the C-terminal residues for alpha-helix formation.
View Article and Find Full Text PDF
Article Synopsis
  • - The study focused on creating effective shortened versions of vasoactive intestinal peptide (VIP) by examining how changes to its structure affect its ability to bind to receptors in rats and relax smooth muscle in mice.
  • - It was found that VIP(1-27) maintained similar receptor binding activity to VIP, while the binding potential significantly decreased with shorter versions; VIP(1-22) and VIP(1-21) had very little activity.
  • - A modified version, [Arg(15, 20, 21), Leu(17)]-VIP(1-23), showed 22 times greater receptor binding and improved muscle relaxation, indicating its potential as a strong and stable VIP receptor agonist.
View Article and Find Full Text PDF

In the blood coagulation cascade, human antithrombin III (hAT III) acts as an inhibitor of serine proteases such as thrombin and factor Xa, and this anticoagulatory glycoprotein requires the binding of heparin for its activation. In this study, we synthesized the polypeptides corresponding to the proposed heparin-binding sites including the (41-49), (286-301) and (123-139) regions of hAT III, and examined their interactions with heparin by means of physicochemical and biochemical methods. All the synthetic peptides had a high affinity toward heparin, evidenced by the fact that they were eluted from a heparin-agarose column at the high salt concentration range of 520-700 mM.

View Article and Find Full Text PDF

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a regulatory neuropeptide which functions as a hypothalamic factor for pituitary hormone release, and as a neurotransmitter, neuromodulator and neurotrophic factor in both frogs and mammals. This study examined the quantitative distribution and chromatographic characterization of immunoreactive PACAP in the central nervous system (CNS) of the bullfrog, Rana catesbeiana, using an enzyme immunoassay (EIA), named avidin-biotin complex detectable EIA for PACAP, and high-performance liquid chromatographic (HPLC) analysis. The brain of adult bullfrogs contained relatively high levels of immunoreactive PACAP (344.

View Article and Find Full Text PDF

In the blood coagulation cascade, heparin activates human plasma antithrombin III (hAT III), resulting in the inhibition of factor Xa. This polysaccharide also exhibits hemorrhagic tendency mediated by the inhibition of thrombin in heparinotherapy. Therefore, attention has focused on the development of low molecular weight heparins (LMW-heparins) that inhibit factor Xa but not thrombin.

View Article and Find Full Text PDF

We have developed a novel and easy enzyme-immunoassay (EIA) for pituitary adenylate cyclase-activating polypeptide (PACAP). We used it to determine immunoreactive PACAP levels in the central nervous system (CNS) and peripheral tissues of two fishes, a teleost (the stargazer) and an elasmobranch (a stingray). An antiserum was raised in a white rabbit immunized with a conjugate of synthetic stargazer PACAP27 plus keyhole limpet hemocyanin.

View Article and Find Full Text PDF

Pituitary adenylate cyclase activating polypeptide (PACAP) modulates neurotransmission in the central and peripheral nervous systems. In vitro and in vivo studies have shown the protective effects of PACAP against neuronal damage induced by ischemia and agonists of NMDA-type glutamate receptors. Here, we demonstrated that PACAP also protected against neuronal toxicity induced by beta-amyloid (Abeta) peptide, aggregation of which is a causative factor for Alzheimer's disease.

View Article and Find Full Text PDF

Both vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) act as neurotransmitters in the central and peripheral nervous systems. Attention has been focused on these neuropeptides because among their numerous biological activities, they have been confirmed to show neuroprotective effects against ischemia and glutamate-induced cytotoxicity. It is well established that glutamate has excitatory effects on neuronal cells, and that excessive glutamate shows potent neurotoxicity, especially in neuronal nitric oxide synthase-containing neurons.

View Article and Find Full Text PDF

Misfolding of the prion protein yields amyloidogenic isoforms, and it shows exacerbating neuronal damage in neurodegenerative disorders including prion diseases. Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) potently stimulate neuritogenesis and survival of neuronal cells in the central nervous system. Here, we tested these neuropeptides on neurotoxicity in PC12 cells induced by the prion protein fragment 106-126 [PrP (106-126)].

View Article and Find Full Text PDF

Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP), two members of the VIP/secretin/glucagon family, modulate neurotransmission via stimulation of protein kinases including cAMP-dependent protein kinase (PKA) and protein kinase C (PKC) in the central and peripheral nervous systems. They are reported to co-exist with nitric oxide synthases (NOSs) and other neuropeptides within the nervous system and peripheral tissues. In the present study, we investigated the neuronal role of these peptides in NO production in PC12 cells.

View Article and Find Full Text PDF