Publications by authors named "Kazuhisa Aoki"

The effects of chronic antidepressant (AD) treatment on sleep disturbances in rodent chronic stress models have not been thoroughly investigated. Here, we show that chronic social defeat stress (SDS) in rats induces prolonged social avoidance, alterations in sleep architecture (increased total rapid eye movement [REM] sleep duration, bout, and shortened REM latency), and contextual but not cued fear memory deficits, even 1 month after the last SDS. These abnormalities were associated with changes in electroencephalography (EEG) spectral powers, including reduced REM sleep theta power during the light phase.

View Article and Find Full Text PDF

Many members of the BTB-ZF family have been shown to play important roles in lymphocyte development and function. The role of zinc finger Znf131 (also known as Zbtb35) in T cell lineage was elucidated through the production of mice with floxed allele to disrupt at different stages of development. In this article, we present that Znf131 is critical for T cell development during double-negative to double-positive stage, with which significant cell expansion triggered by the pre-TCR signal is coupled.

View Article and Find Full Text PDF

In our previous studies, we demonstrated that chimeric molecules of the CMP-sialic acid (CMP-Sia) transporter (CST) and the UDP-galactose (Gal) transporter (UGT) in which the seventh transmembrane helix-containing segment was derived from the CST could transport both CMP-Sia and UDP-Gal and that the CST-derived seventh transmembrane helix segment was sufficient for the chimera to recognize CMP-Sia in the otherwise UGT context. In this study, we continued to more precisely define the submolecular region that is necessary for CMP-Sia recognition, and we demonstrated that the N-terminal half of the seventh transmembrane helix of CST is essential for the CMP-Sia transport mediated by the chimeric transporters. We further showed that Tyr214Gly and Ser216Phe mutations of a chimeric transporter that was capable of transporting both CMP-Sia and UDP-Gal led to the selective loss of CMP-Sia transport activity without affecting UDP-Gal transport activity.

View Article and Find Full Text PDF

Notch is a transmembrane receptor that shares homology with proteins containing epidermal growth factor-like repeats and mediates the cell-cell interactions necessary for many cell fate decisions. In Drosophila, O-fucosyltransferase 1 catalyzes the O-fucosylation of these epidermal growth factor-like repeats. This O-fucose elongates, resulting in an O-linked tetrasaccharide that regulates the signaling activities of Notch.

View Article and Find Full Text PDF

Demethylation of transcriptional regulatory elements and gene coding regions is an important step in the epigenetic regulation of gene expression. Several noncoding conserved regions are required for the efficient transcription of cytokine genes. In this paper, we show that the deletion of one such sequence, conserved noncoding sequence 1 (CNS-1), interferes with the efficient demethylation of Th2 cytokine genes but has little effect on histone modifications in the area.

View Article and Find Full Text PDF
Article Synopsis
  • Congenital disorder of glycosylation IIc (CDG IIc) is a recessive syndrome marked by slow growth, intellectual disability, and severe immune issues, linked to a defective GDP-fucose transporter gene.
  • Researchers used a Drosophila model to explore the developmental problems in CDG IIc, finding that the Drosophila version of the GDP-fucose transporter (Gfr) is crucial for certain glycosylation processes involved in Notch signaling.
  • Their findings suggest that while Gfr impacts vital developmental signaling, Drosophila can still survive without it, indicating the presence of another GDP-fucose transporter in the genome, which is also necessary for normal cell signaling in mammals, highlighting
View Article and Find Full Text PDF

We report the molecular cloning of SLC35D2, a novel member of the SLC35 nucleotide sugar transporter family. The gene SLC35D2 maps to chromosome 9q22.33.

View Article and Find Full Text PDF

Human UDP-Gal transporter 1 (hUGT1) and the human CMP-Sia transporter (hCST) are similar in structure, with amino acid sequences that are 43% identical, but they have quite distinct transport substrates. To define their substrate recognition regions, we constructed various chimeras between the two transporters and demonstrated that distinct submolecular regions of the transporter molecules are involved in the specific recognition of UDP-Gal and CMP-Sia (Aoki, K., Ishida, N.

View Article and Find Full Text PDF