Background: Stent encrustation with debris and mucostasis is a significant cause of airway injury and comorbidity, leading to ~25% of stent exchanges (1-3). Previous work from our group has shown that the experimental coating can reduce mucous adhesion in bench testing and demonstrated a signal for reducing airway injury and mucostasis in a feasibility study.
Objectives: The aim of this study is to continue our inquiry in a randomized, single-blinded multi-animal trial to investigate the degree of airway injury and mucostasis using silicone stents with and without this specialized coating.
Objective: In the past five decades, many small caliber vascular grafts have been developed as bypasses for infrapopliteal or coronary arteries. However, reliable grafts have not been obtained owing to poor patency, mainly caused by early thrombosis or neointimal hyperplasia in the intermediate period after implantation. We developed a novel small caliber heparin-loaded polyethylene terephthalate ultrafine microfiber (HL-PET) graft and evaluated the feasibility to overcome those main causes of graft failure in canine carotid artery implantation.
View Article and Find Full Text PDFThis protocol describes the synthesis of 500-4,000 Da poly(propylene fumarate) (PPF) by a two-step reaction of diethyl fumarate and propylene glycol through a bis(hydroxypropyl) fumarate diester intermediate. Purified PPF can be covalently cross-linked to form degradable polymer networks, which have been widely explored for biomedical applications. The properties of cross-linked PPF networks depend upon the molecular properties of the constituent polymer, such as the molecular weight.
View Article and Find Full Text PDFThe proteomic analysis of serum (plasma) has been a major approach to determining biomarkers essential for early disease diagnoses and drug discoveries. The determination of these biomarkers, however, is analytically challenging since the dynamic concentration range of serum proteins/peptides is extremely wide (more than 10 orders of magnitude). Thus, the reduction in sample complexity prior to proteomic analyses is essential, particularly in analyzing low-abundance protein biomarkers.
View Article and Find Full Text PDFThis research investigates the release of plasmid DNA from novel hydrogel composites of oligo(poly(ethylene glycol) fumarate) (OPF) and cationized gelatin microspheres (CGMS), as well as the swelling and degradation of these materials in vitro. The release of total DNA and of double-stranded DNA was measured fluorescently, and the swelling properties and polymer mass loss of the hydrogels were assessed. Further, the structural integrity of the released DNA was determined through electrophoresis.
View Article and Find Full Text PDFThis research examines the bone formation response to release of plasmid DNA encoding human Bone Morphogenetic Protein-2 from hydrogel composites consisting of cationized gelatin microspheres (CGMS) embedded within a crosslinked oligo(poly(ethylene glycol) fumarate) (OPF) hydrogel network in a critical-sized rat cranial defect model after 30 days. Four composite groups were investigated: (1) composites with 10 microg DNA loaded into the CGMS phase, (2) composites with 10 microg DNA loaded into the OPF phase, (3) composites with 100 microg DNA loaded into the OPF phase, and (4) composites without DNA (material control). Light microscopy revealed no enhancement in bone formation for groups releasing plasmid DNA, relative to the material control group.
View Article and Find Full Text PDFWe synthesized positively charged biodegradable hydrogels with different poly(propylene fumarate-co-ethylene glycol) [P(PF-co-EG)] block copolymers and agmatine-modified poly(ethylene glycol)-tethered fumarate [Agm-PEGF] by radical crosslinking and investigated the effect of copolymer composition and agmatine modification on their degradation. Hydrogels were incubated in phosphate-buffered saline (PBS) at 37 degrees C with periodic PBS changes. All hydrogels experienced a slight mass loss over 4 weeks, ranging from 10-20%.
View Article and Find Full Text PDFWe synthesized positively charged biodegradable hydrogels from poly(propylene fumarate-co-ethylene glycol) block copolymer and agmatine-modified poly(ethylene glycol)-tethered fumarate by radical crosslinking, and investigated the effect of the guanidino group of agmatine on vascular smooth muscle cell adhesion and protein adsorption to the hydrogels. In the presence of serum, the number of adherent smooth muscle cells per unit surface area increased dose-dependently from 15 to 75% of the initial seeding density at 20 h as the initial agmatine-modified monomer content increased from 0 to 200 mg/g. Cell spreading also depended on the initial monomer content.
View Article and Find Full Text PDFJ Biomed Mater Res
December 2002
We synthesized poly(propylene fumarate-co-ethylene glycol) block copolymers [P(PF-co-EG)] that were crosslinked to form hydrogels and investigated the effect of copolymer composition on cell adhesion to the hydrogels. These copolymers were water soluble when the molar ratio of ethylene glycol repeating unit to propylene fumarate repeating unit was higher than 4.4.
View Article and Find Full Text PDFWe synthesized positively charged biodegradable hydrogels by cross-linking of agmatine-modified poly(ethylene glycol)-tethered fumarate (Agm-PEGF) and poly(propylene fumarate-co-ethylene glycol) (P(PF-co-EG)) to investigate the effect of the guanidino groups of the agmatine on hydrogel swelling behavior and smooth muscle cell adhesion to the hydrogels. The weight swelling ratio of these hydrogels at pH 7.0 increased from 279 +/- 4 to 306 +/- 7% as the initial Agm-PEGF content increased from 0 to 200 mg/g of P(PF-co-EG), respectively.
View Article and Find Full Text PDF