Publications by authors named "Kazuhiro Nakabayashi"

Stimuli-responsive polymeric nanoparticles (NPs) exhibit reversible changes in the dispersion or aggregation state in response to external stimuli. In this context, we designed and synthesized core-shell NPs with threonine-containing weak polyelectrolyte shells and fluorescent cross-linked cores, which are applicable for the detection of pH changes and amine compounds in aqueous solution. Stable and uniform NP(dTh) and NP(Fl), consisting of fluorescent symmetric diphenyl dithiophene (dTh) and diphenyl fluorene (Fl) cross-linked cores, were prepared by site-selective Suzuki coupling reactions in self-assembled block copolymer.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers created new donor-acceptor π-conjugated copolymers using a specific process that involved the direct arylation polycondensation of two types of compounds.
  • The addition of unsymmetrical monothienoisoindigo units in these copolymers adjusted their electronic properties to be suitable for use with common materials in organic solar cells.
  • The resulting copolymers displayed improved structural order and crystallinity, and the most efficient version achieved a solar cell efficiency of 1.91%.
View Article and Find Full Text PDF

Donor-acceptor crosslinked poly[poly(ethylene glycol) methyl ether-methacrylate]-block-poly[1,1'-bis(2-ethylpentyl)-6-methyl-6'-(5-methyl-3-vinylthiophen-2-yl)-[3,3'-biindoline]-2,2'-dione] (poly(PEGMA) -b-poly(VTIID) ) nanoparticles with various vinylthiophene donor/isoindigo acceptor ratios are synthesized successfully. The prepared nanoparticles have uniform sizes and well-defined core-shell nanostructures. The intramolecular charge transfer is effectively enhanced due to the incorporation of acceptor groups after the crosslinking reaction.

View Article and Find Full Text PDF

Synthesis of novel block and random copolymers, containing a carbazole unit and (di)phenylanthracene moiety in the side chains, has been described in this paper. Block and random copolymers composed of 4-bromophenyl vinyl sulfide (BPVS) and -vinylcarbazole (NVC) were initially prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization. Then, anthracene-based groups were introduced on the bromophenyl unit in the carbazole-containing copolymers by Pd-catalyzed coupling to yield functional copolymers with additional (di)phenylanthracene units.

View Article and Find Full Text PDF

A series of anionic, zwitterionic, and cationic lysine-based block copolymers with a thermoresponsive segment were synthesized by the reversible addition-fragmentation chain transfer (RAFT) polymerization of N-acryloyl- N-carbobenzoxy-l-lysine [A-Lys(Cbz)-OH], which contains a carboxylic acid and a protected amine-functionality in the monomer unit. Carboxylic acid-containing homopolymers, poly(A-Lys(Cbz)-OH), with predetermined molecular weights with relatively low polydispersities were initially synthesized by RAFT polymerization of A-Lys(Cbz)-OH. The chain extension of the dithiocarbamate-terminated poly(A-Lys(Cbz)-OH) to N-isopropylacrylamide (NIPAM) via the RAFT process and subsequent deprotection afforded the zwitterionic block copolymer composed of thermoresponsive poly(NIPAM) and poly(A-Lys-OH), which exhibited switchability among the zwitterionic, anionic, and cationic states by pH change.

View Article and Find Full Text PDF

Ionic liquid-based block copolymers composed of ionic (solubility tunable)⁻nonionic (water-soluble and thermoresponsive) segments were synthesized to explore the relationship between ionic conductivity and assembled structures. Three block copolymers, comprising poly(-vinylimidazolium bromide) (poly(NVI-Br)) as a hydrophilic poly(ionic liquid) segment and thermoresponsive poly(-isopropylacrylamide) (poly(NIPAM)), having different compositions, were initially prepared by RAFT polymerization. The anion-exchange reaction of the poly(NVI-Br) in the block copolymers with lithium bis(trifluoromethanesulfonyl)imide (LiNTf₂) proceeded selectively to afford amphiphilic block copolymers composed of hydrophobic poly(NVI-NTf₂) and hydrophilic poly(NIPAM).

View Article and Find Full Text PDF

Solution processable cross-linked core-shell poly[poly(ethylene glycol)methylether methacrylate]-block-poly(2,5-dibromo-3-vinylthiophene) (poly(PEGMA)m-b-poly(DB3VT)n) nanoparticles are firstly explored as charge storage materials for transistor-type memory devices owing to their efficient and controllable ability in electric charge transfer and trapping.

View Article and Find Full Text PDF

Fullerene derivatives have been widely used for conventional acceptor materials in organic photovoltaics (OPVs) because of their high electron mobility. However, there are also considerable drawbacks for use in OPVs, such as negligible light absorption in the visible-near-IR regions, less compatibility with donor polymeric materials and high cost for synthesis and purification. Therefore, the investigation of non-fullerene acceptor materials that can potentially replace fullerene derivatives in OPVs is increasingly necessary, which gives rise to the possibility of fabricating all-polymer (polymer/polymer) solar cells that can deliver higher performance and that are potentially cheaper than fullerene-based OPVs.

View Article and Find Full Text PDF