Publications by authors named "Kazuhiro Kuga"

Article Synopsis
  • The study investigates the use of a heart rate variability (HRV) index derived from machine learning as a biomarker for drug-induced convulsions, focusing on its effectiveness with various convulsants.
  • Different doses of convulsants and non-convulsants were administered to telemetry-implanted male subjects, and the convulsive potential was analyzed using HRV data and statistical methods.
  • Findings suggested that the convulsive index increased for certain convulsants at lower doses, while the methodology has potential for predicting autonomic nervous activity fluctuations, although it may produce false positives.
View Article and Find Full Text PDF

Drug-induced convulsions-often caused by the inhibition of GABA receptors and stimulation of glutamate receptors-are difficult to predict in animals. In this study, we attempted to detect the proconvulsant potential using motor-evoked potentials (MEPs) after focal electrical stimulation or upon using a functional observational battery (FOB). Pentylenetetrazole, kainic acid, and pilocarpine were used as convulsion-inducing drugs, and baclofen was used as a negative control.

View Article and Find Full Text PDF

Drug-induced neurotoxicity is a leading cause of safety-related attrition for therapeutics in clinical trials, often driven by poor predictivity of preclinical in vitro and in vivo models of neurotoxicity. Over a dozen different iPSC-derived 3D spheroids have been described in recent years, but their ability to predict neurotoxicity in patients has not been evaluated nor compared with the predictive power of nonclinical species. To assess the predictive capabilities of human iPSC-derived neural spheroids (microBrains), we used 84 structurally diverse pharmaceuticals with robust clinical and pre-clinical datasets with varying degrees of seizurogenic and neurodegenerative liability.

View Article and Find Full Text PDF

Drug-induced convulsion is a severe adverse event; however, no useful biomarkers for it have been discovered. We propose a new method for predicting drug-induced convulsions in monkeys based on heart rate variability (HRV) and a machine learning technique. Because autonomic nervous activities are altered around the time of a convulsion and such alterations affect HRV, they may be predicted by monitoring HRV.

View Article and Find Full Text PDF

Subarachnoid hemorrhage (SAH) is a life-threatening condition that can also lead to permanent paralysis. However, the mechanisms that underlying neurobehavioral deficits after SAH have not been fully elucidated. As theta burst stimulation (TBS) can induce long-term potentiation (LTP) in the motor cortex, we tested its potential as a functional evaluation tool after experimentally induced SAH.

View Article and Find Full Text PDF

Acute and chronic arsenic (As) toxicity is a global health issue affecting millions of people, which leads to inactivation of over 200 enzymes, particularly those involved in cellular energy pathways and DNA synthesis and repair. The fern acts as a hyperaccumulator of As and may be useful for phytoremediation to reduce disposal risks by utilizing metal-enriched plant biomass in energy and metal recovery. However, these ferns grow in limited environments and its transplantation and transport can be challenging.

View Article and Find Full Text PDF

Myocardial fibrosis is often associated with cardiac hypertrophy; indeed, fibrosis is one of the most critical factors affecting prognosis. We aimed to identify the molecules involved in promoting fibrosis under hypertrophic stimuli. We previously established a rat model of cardiac hypertrophy by pulmonary artery banding, in which approximately half of the animals developed fibrosis in the right ventricle.

View Article and Find Full Text PDF

In vivo phototoxicity studies are important to predict drug-induced phototoxicity in humans; however, a standard methodology has not established. To determine differences in sensitivity to drug-induced phototoxicity among various skin sites, we evaluated phototoxic reactions in the back and abdominal skin of female Sprague-Dawley rats orally dosed with phototoxic drugs (pirfenidone, 8-methoxysoraren, doxycycline, and lomefloxacin) or a non-phototoxic drug (gatifloxacin) followed by solar-simulated light irradiation comprising 18J/cm ultraviolet A. Tissue reactions were evaluated by macroscopic and microscopic examination and immunohistochemistry for γ-H2AX, and tissue concentrations of pirfenidone, doxycycline, and lomefloxacin were measured by tandem mass spectrometry.

View Article and Find Full Text PDF