Formation and electronic states of graphene nanoribbons with arm-chair edges (AGNR) are studied on the SiC(0001) vicinal surfaces toward the [11-00] direction. The surface step and terrace structures of both 4H and 6H-SiC substrates are used as the growth templates of one-dimensional arrays of AGNRs, which are prepared using the carbon molecular beam epitaxy followed by hydrogen intercalation. A band gap is observed above the-band maximum by angle-resolved photoelectron spectroscopy (ARPES) for the both samples.
View Article and Find Full Text PDFBeamline 13 of the Photon Factory has been in operation since 2010 as a vacuum ultraviolet and soft X-ray undulator beamline for X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), and angle-resolved photoelectron spectroscopy (ARPES) experiments. The beamline and the end-station at branch B have been recently upgraded, enabling microscopic XPS, XAS, and ARPES measurements to be performed. In 2015, a planar undulator insertion device was replaced with an APPLE-II (advanced planar polarized light emitter II) undulator.
View Article and Find Full Text PDFWe report a newly designed compact cell to measure XAFS spectra with the conversion electron yield (CEY) method in the soft X-ray region under ambient-pressure gas conditions. Secondary electrons generated from the gas and sample by collision of X-ray-absorption-induced Auger electrons are collected by a positively biased collector electrode to obtain XAFS spectra. It was confirmed that this cell is applicable to soft X-ray surface XAFS measurements for different types of materials such as insulating organic materials and metal oxides under 1 bar gas conditions.
View Article and Find Full Text PDFSingle-crystalline organic semiconductors exhibiting band transport have opened new possibilities for the utilization of efficient charge carrier conduction in organic electronic devices. The epitaxial growth of molecular materials is a promising route for the realization of well-crystallized organic semiconductor p-n junctions for optoelectronic applications enhanced by the improved charge carrier mobility. In this study, the formation of a high-quality crystalline interface upon "quasi-homoepitaxial" growth of bis(trifluoromethyl)dimethylrubrene (fmRub) on the single-crystal surface of rubrene was revealed by using out-of-plane and grazing-incidence X-ray diffraction techniques.
View Article and Find Full Text PDFThe structural and electronic properties of interfaces composed of donor and acceptor molecules play important roles in the development of organic opto-electronic devices. Epitaxial growth of organic semiconductor molecules offers a possibility to control the interfacial structures and to explore precise properties at the intermolecular contacts. 5,6,11,12-tetraazanaphthacene (TANC) is an acceptor molecule with a molecular structure similar to that of pentacene, a representative donor material, and thus, good compatibility with pentacene is expected.
View Article and Find Full Text PDFA high-precision XYZ translator was developed for the microanalysis of electronic structures and chemical compositions on material surfaces by electron spectroscopy techniques, such as photoelectron spectroscopy and absorption spectroscopy, utilizing the vacuum ultraviolet and soft X-ray synchrotron radiation at an undulator beamline BL-13B at the Photon Factory. Using the high-precision translator, the profile and size of the undulator beam were estimated. They were found to strongly depend on the photon energy but were less affected by the polarization direction.
View Article and Find Full Text PDFIn situ monitoring of initial oxidation of GaAs surfaces was performed under (near-) realistic oxidizing environments, using ambient-pressure X-ray photoelectron spectroscopy (AP-XPS). The surface chemical states drastically change with time. The oxidation process at the sub-nano-meter-scale exhibits a significantly small activation energy, which can be regarded as a quasi-barrier-less oxidation.
View Article and Find Full Text PDFUtilization of carbon dioxide (CO) molecules leads to increased interest in the sustainable synthesis of methane (CH) or methanol (CHOH). The representative reaction intermediate consisting of a carbonyl or formate group determines yields of the fuel source during catalytic reactions. However, their selective initial surface reaction processes have been assumed without a fundamental understanding at the molecular level.
View Article and Find Full Text PDFJ Phys Chem Lett
November 2020
Oxidation of monometallic Pd and bimetallic PdAu alloy surfaces are observed by ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) at an elevated pressure (100 mTorr O ambient). It is directly evidenced that the alloying with Au hinders the surface oxidation of PdAu surfaces compared with monometallic Pd surfaces. Remarkably, the oxidation behavior is clearly different between PdAu(111) and (100) surfaces.
View Article and Find Full Text PDFLocal distortion in the conduction pathway has a significant influence on the conducting properties of oxides. The electronic states induced in the band gap of SrTiO3 by La doping were investigated using photoemission spectroscopy (PES) and soft X-ray emission spectroscopy (SXES); moreover, the local distortion in the conduction pathway was examined using extended X-ray absorption fine structure (EXAFS). An itinerant state and a localized state were observed as a metallic state and an in-gap state, respectively, in the PES spectra and as inelastic peaks in the SXES spectra.
View Article and Find Full Text PDFThe Zag meteorite which is a thermally-metamorphosed H ordinary chondrite contains a primitive xenolithic clast that was accreted to the parent asteroid after metamorphism. The cm-sized clast contains abundant large organic grains or aggregates up to 20 μm in phyllosilicate-rich matrix. Here we report organic and isotope analyses of a large (~10 μm) OM aggregate in the Zag clast.
View Article and Find Full Text PDFThe interactions between oxygen and Rh-Pd bimetallic alloy surfaces were investigated using surface sensitive experimental techniques and density functional theory calculations. The alloy surfaces were oxidized under 10-5 Torr and 100 mTorr oxygen upon heating above 250 °C. A thin Rh oxide layer was preferentially formed on a Rh1Pd9(100) surface, while a thin Pd oxide layer was formed on a Rh1Pd9(111) surface, though the Rh oxide is thermodynamically more stable irrespective of the surface orientation.
View Article and Find Full Text PDFThe origin of the synergistic catalytic effect between metal catalysts and reducible oxides has been debated for decades. Clarification of this effect, namely, the strong metal-support interaction (SMSI), requires an understanding of the geometric and electronic structures of metal-metal oxide interfaces under operando conditions. We show that the inherent lattice mismatch of bimetallic materials selectively creates surface segregation of subsurface metal atoms.
View Article and Find Full Text PDFDirect evidence of complex prebiotic chemistry from a water-rich world in the outer solar system is provided by the 4.5-billion-year-old halite crystals hosted in the Zag and Monahans (1998) meteorites. This study offers the first comprehensive organic analysis of the soluble and insoluble organic compounds found in the millimeter-sized halite crystals containing brine inclusions and sheds light on the nature and activity of aqueous fluids on a primitive parent body.
View Article and Find Full Text PDFCatalytic CO oxidation over Pd(111) and PdAu(111) surfaces was investigated by in situ spectroscopic observations to understand the alloying effect. The reaction behaviour on PdAu(111) is greatly different from that on Pd(111). Pd monomer and dimer ensembles can act as active centers, whereas triangular-shaped trimers and larger ensembles are inactive.
View Article and Find Full Text PDFThe study of CO oxidation on Pt(1 1 0) surface is revisited using ambient pressure x-ray photoemission spectroscopy. When the surface temperature reaches the activation temperature for CO oxidation under elevated pressure conditions, both the α-phase of PtO oxide and chemisorbed oxygen are formed simultaneously on the surface. Due to the exothermic nature of CO oxidation, the temperature of the Pt surface increases as CO oxidation takes place.
View Article and Find Full Text PDFAdsorption of radiocesium (RCs) on particulate matters in aquatic environment is important to understand its mobility and bioavailability. We here focused on factors controlling partition of RCs on particulate matters and sediments in Kuchibuto (Fukushima) and Pripyat (Chernobyl) Rivers, though RCs level in water was much smaller than WHO guideline. Moreover, Cs speciation and organic matter-clay mineral interaction were studied: (i) extended X-ray absorption fine structure showed that the contribution of outer-sphere complex of Cs on particulate matters is larger in Chernobyl than in Fukushima and (ii) scanning transmission X-ray microscope revealed larger association of humic substances and clay minerals in Chernobyl partly due to high [Ca] in the Pripyat River.
View Article and Find Full Text PDFBulk sensitivity of hard X-ray photoelectron spectroscopy (HAXPES) makes this technique suitable for chemical state analysis of bulk and deeply buried interfaces of solid materials. HAXPES is employed in the present study to examine the chemical state of adhesive interfaces between natural rubber and copper-zinc alloy, i.e.
View Article and Find Full Text PDFNatural bacteriogenic iron oxides (BIOS) were investigated using local-analyzable synchrotron-based scanning transmission X-ray microscopy (STXM) with a submicron-scale resolution. Cell, cell sheath interface (EPS), and sheath in the BIOS were clearly depicted using C-, N-, and O- near edge X-ray absorption fine structure (NEXAFS) obtained through STXM measurements. Fe-NEXAFS obtained from different regions of BIOS indicated that the most dominant iron mineral species was ferrihydrite.
View Article and Find Full Text PDFThe modification of the Au(111) Shockley surface state (SS) by an n-alkane molecule (n-tetratetracontane) monolayer was observed by angle-resolved ultraviolet photoemission spectroscopy. Although there is little chance of chemical interaction in this ideal physisorption system, the volume of the Fermi surface of the SS was significantly reduced accompanied by the formation of large interface electric dipoles. Moreover, Rashba splitting of the SS by spin-orbit interactions was slightly increased upon n-tetratetracontane adsorption, which arose from the decrease in the symmetry of the wave function around the Au nuclei at the surface.
View Article and Find Full Text PDFLocal electron-phonon coupling of a one-dimensionally nanorippled graphene is studied on a SiC(0001) vicinal substrate. We have characterized local atomic and electronic structures of a periodically nanorippled graphene (3.4 nm period) prepared on a macrofacet of the 6H-SiC crystal using scanning tunneling microscopy/spectroscopy (STM/STS) and angle-resolved photoelectron spectroscopy (ARPES).
View Article and Find Full Text PDFWe herein investigated the mechanisms underlying the contact leaching process in pyrite bioleaching by Acidithiobacillus ferrooxidans using scanning transmission X-ray microscopy (STXM)-based C and Fe near edge X-ray absorption fine structure (NEXAFS) analyses. The C NEXAFS analysis directly showed that attached A. ferrooxidans produces polysaccharide-abundant extracellular polymeric substances (EPS) at the cell-pyrite interface.
View Article and Find Full Text PDFUpon charge carrier transport behaviors of high-mobility organic field effect transistors of pentacene single crystal, effects of ambient gases and resultant probable 'impurities' at the crystal surface have been controversial. Definite knowledge on the surface stoichiometry and chemical composites is indispensable to solve this question. In the present study, high-resolution x-ray photoelectron spectroscopy (XPS) measurements on the pentacene single crystal samples successfully demonstrated a presence of a few atomic-percent of (photo-)oxidized species at the first molecular layer of the crystal surface through accurate analyses of the excitation energy (i.
View Article and Find Full Text PDFCarbon-free chromium-coated optics are ideal in the carbon K-edge region (280-330 eV) because the reflectivity of first-order light is larger than that of gold-coated optics while the second-order harmonics (560-660 eV) are significantly suppressed by chromium L-edge and oxygen K-edge absorption. Here, chromium-, gold- and nickel-coated mirrors have been adopted in the vacuum ultraviolet and soft X-ray branch beamline BL-13B at the Photon Factory in Tsukuba, Japan. Carbon contamination on the chromium-coated mirror was almost completely removed by exposure to oxygen at a pressure of 8 × 10(-2) Pa for 1 h under irradiation of non-monochromated synchrotron radiation.
View Article and Find Full Text PDFOrganic solar cells (OSCs) with a bulk-heterojunction (BHJ) are promising energy conversion devices, because they are flexible and environmental-friendly, and can be fabricated by low-cost roll-to-roll process. Here, we systematically investigated the interrelations between photovoltaic properties and the domain morphology of the active layer in OSCs based on films of poly-(9,9-dioctylfluorene-co-bithiophene) (F8T2)/[6,6]-phenyl C71-butyric acid methyl ester (PC71BM) blend annealed at various temperatures (Tan). The scanning transmission X-ray microscopy (STXM) revealed that fullerene mixing (ΦFullerene) in the polymer matrix decreases with increase in Tan while the domain size (L) is nearly independent of Tan.
View Article and Find Full Text PDF