Publications by authors named "Kazuhiko Horigome"

Fibrodysplasia ossificans progressiva (FOP) is a rare and intractable disorder characterized by extraskeletal bone formation through endochondral ossification. FOP patients harbor gain-of-function mutations in ACVR1 (FOP-ACVR1), a type I receptor for bone morphogenetic proteins. Despite numerous studies, no drugs have been approved for FOP.

View Article and Find Full Text PDF

Fibrodysplasia ossificans progressiva (FOP) is a rare and intractable disease characterized by extraskeletal bone formation through endochondral ossification. Patients with FOP harbor point mutations in ACVR1, a type I receptor for BMPs. Although mutated ACVR1 (FOP-ACVR1) has been shown to render hyperactivity in BMP signaling, we and others have uncovered a mechanism by which FOP-ACVR1 mistransduces BMP signaling in response to Activin-A, a molecule that normally transduces TGF-β signaling.

View Article and Find Full Text PDF

Fibrodysplasia ossificans progressiva (FOP) is a rare genetic disease characterized by extraskeletal bone formation through endochondral ossification. FOP patients harbor point mutations in ACVR1 (also known as ALK2), a type I receptor for bone morphogenetic protein (BMP). Two mechanisms of mutated ACVR1 (FOP-ACVR1) have been proposed: ligand-independent constitutive activity and ligand-dependent hyperactivity in BMP signaling.

View Article and Find Full Text PDF

Successful in vitro disease-recapitulation using patient-specific induced pluripotent stem cells (iPSCs) requires two fundamental technical issues: appropriate control cells and robust differentiation protocols. To investigate fibrodysplasia ossificans progressiva (FOP), a rare genetic disease leading to extraskeletal bone formation through endochondral ossification, gene-corrected (rescued) iPSC clones (resFOP-iPSC) were generated from patient-derived iPSC (FOP-iPSC) as genetically matched controls, and the stepwise induction method of mesenchymal stromal cells (iMSCs) through neural crest cell (NCC) lineage was used to recapitulate the disease phenotype. FOP-iMSCs possessing enhanced chondrogenic ability were transcriptionally distinguishable from resFOP-iMSCs and activated the SMAD1/5/8 and SMAD2/3 pathways at steady state.

View Article and Find Full Text PDF

Objective: Neonatal-onset multisystem inflammatory disease (NOMID) is a dominantly inherited autoinflammatory disease caused by NLRP3 mutations. NOMID pathophysiology is explained by the NLRP3 inflammasome, which produces interleukin-1β (IL-1β). However, epiphyseal overgrowth in NOMID is resistant to anti-IL-1 therapy and may therefore occur independently of the NLRP3 inflammasome.

View Article and Find Full Text PDF

Metformin is widely used as a hypoglycemic agent for the treatment of type 2 diabetes. Both metformin and rotenone, an inhibitor of respiratory chain complex I, suppressed glucose-6-phosphatase (G6pc), a rate limiting enzyme of liver glucose production, mRNA expression in a rat hepatoma cell line accompanied by a reduction of intracellular ATP concentration and an activation of AMP-activated protein kinase (AMPK). When yeast NADH-quinone oxidoreductase 1 (NDI1) gene was introduced into the cells, neither inhibition of ATP synthesis nor activation of AMPK was induced by these agents.

View Article and Find Full Text PDF

Deposition of amyloid beta-peptide (Abeta) into amyloid plaques is one of the invariant neuropathological features of Alzheimer's disease. Proteins that codeposit with Abeta are potentially important for the pathogenesis, and a recently discovered plaque-associated protein is the collagenous Alzheimer amyloid plaque component (CLAC). In this study, we investigated the molecular interactions between Abeta aggregates and CLAC using surface plasmon resonance spectroscopy and a solid-phase binding immunoassay.

View Article and Find Full Text PDF

Transforming growth factor-beta (TGF-beta) is a potent fibrotic factor responsible for the synthesis of extracellular matrix (ECM) and is implicated as the major determinant in pathogenesis of chronic fibroses, including kidney. The novel small compound SMP-534 reduced ECM production induced by TGF-beta in fibroblast cells. SMP-534 inhibited TGF-beta-induced p38 mitogen-activated protein kinase (p38) activation but did not inhibit epidermal growth factor (EGF)-induced extracellular signal-related kinase (ERK) activation.

View Article and Find Full Text PDF