Publications by authors named "Kazuhide Yahata"

malaria parasites are obligate intracellular protozoans that use a unique form of locomotion, termed gliding motility, to move through host tissues and invade cells. The process is substrate dependent and powered by an actomyosin motor that drives the posterior translocation of extracellular adhesins which, in turn, propel the parasite forward. Gliding motility is essential for tissue translocation in the sporozoite and ookinete stages; however, the short-lived erythrocyte-invading merozoite stage has never been observed to undergo gliding movement.

View Article and Find Full Text PDF

Plasmodium, the causative agents of malaria, are obligate intracellular organisms. In humans, pathogenesis is caused by the blood stage parasite, which multiplies within erythrocytes, thus erythrocyte invasion is an essential developmental step. Merozoite form parasites released into the blood stream coordinately secrets a panel of proteins from the microneme secretory organelles for gliding motility, establishment of a tight junction with a target naive erythrocyte, and subsequent internalization.

View Article and Find Full Text PDF

Malaria remains a heavy global burden on human health, and it is important to understand the molecular and cellular biology of the parasite to find targets for drug and vaccine development. The mouse malaria model is an essential tool to characterize the function of identified molecules; however, robust technologies for targeted gene deletions are still poorly developed for the widely used rodent malaria parasite, Plasmodium yoelii. To overcome this problem, we established a DiCre-loxP inducible knockout (iKO) system in P.

View Article and Find Full Text PDF

Plasmodium falciparum malaria parasites export several hundred proteins to the cytoplasm of infected red blood cells (RBCs) to modify the cell environment suitable for their growth. A Plasmodium translocon of exported proteins (PTEX) is necessary for both soluble and integral membrane proteins to cross the parasitophorous vacuole (PV) membrane surrounding the parasite inside the RBC. However, the molecular composition of the translocation complex for integral membrane proteins is not fully characterized, especially at the parasite plasma membrane.

View Article and Find Full Text PDF

Chemical conversion of the extract of natural resources is a very attractive way to expand the chemical space to discover bioactive compounds. In order to search for new medicines to treat parasitic diseases that cause high morbidity and mortality in affected countries in the world, the ethyl acetate extract from the rhizome of (L.) has been chemically converted by epoxidation using dioxirane generated in situ.

View Article and Find Full Text PDF

Babesia bovis causes a pathogenic form of babesiosis in cattle. Following invasion of red blood cells (RBCs) the parasite extensively modifies host cell structural and mechanical properties via the export of numerous proteins. Despite their crucial role in virulence and pathogenesis, such proteins have not been comprehensively characterized in B.

View Article and Find Full Text PDF

Malaria parasites proliferate by repeated invasion of and multiplication within erythrocytes in the vertebrate host. Sexually committed intraerythrocytic parasites undergo sexual stage differentiation to become gametocytes. After ingestion by the mosquito, male and female gametocytes egress from erythrocytes and fertilize within the mosquito midgut.

View Article and Find Full Text PDF

Plasmodium vivax is the leading cause of malaria outside Africa and represents a significant health and economic burden on affected countries. A major obstacle for P. vivax eradication is the dormant hypnozoite liver stage that causes relapse infections and the limited antimalarial drugs that clear this stage.

View Article and Find Full Text PDF

has a complex life cycle that involves interaction with multiple tissues inside the human and mosquito hosts. Identification of essential genes at all different stages of the life cycle is urgently required for clinical development of tools for malaria control and eradication. However, the study of is limited by the inability to genetically modify the parasite throughout its life cycle with the currently available genetic tools.

View Article and Find Full Text PDF

Plasmodium falciparum, an obligate intracellular protozoan parasite which causes the severe form of human malaria, exports numerous proteins to the infected red blood cell that are important for its survival and of severe pathological effect to its host. These proteins and their export mechanisms are candidates for drug and vaccine development, and among them is the Plasmodium SURFIN family of proteins. Previously we showed that the N-terminal region along with the sequence surrounding the transmembrane domain of SURFIN is essential for its export to Maurer's clefts in the red blood cell cytoplasm.

View Article and Find Full Text PDF
Article Synopsis
  • Plasmodium falciparum, which causes severe malaria, shows insensitivity to thapsigargin (TG), a common inhibitor of human calcium pumps (SERCA).
  • Research using fragment molecular orbital (FMO) methods revealed that the primary interaction energy difference between human and P. falciparum SERCA is due to polar interactions, specifically hydrogen bonding with TG's hydroxyl group.
  • By modifying the hydroxyl group in TG, scientists demonstrated they could reverse its sensitivity between human and P. falciparum SERCA, offering insights for creating new antimalarial drugs.
View Article and Find Full Text PDF

Plasmodium malaria parasites multiply within erythrocytes and possess a repertoire of proteins whose function is to recognize and invade these vertebrate host cells. One such protein involved in erythrocyte invasion is the micronemal protein, Erythrocyte Binding-Like (EBL), which has been studied as a potential target of vaccine development in Plasmodium vivax (PvDBP) and Plasmodium falciparum (EBA-175). In the rodent malaria parasite model Plasmodium yoelii, specific substitutions in the EBL regions responsible for intracellular trafficking (17XL parasite line) or receptor recognition (17X1.

View Article and Find Full Text PDF

During development within the host erythrocyte malaria parasites generate nascent membranous structures which serve as a pathway for parasite protein transport to modify the host cell. The molecular basis of such membranous structures is not well understood, particularly for malaria parasites other than Plasmodium falciparum. To characterize the structural basis of protein trafficking in the Plasmodium knowlesi-infected erythrocyte, we identified a P.

View Article and Find Full Text PDF

Individuals living in malaria endemic areas become clinically immune after multiple re-infections over time and remain infected without apparent symptoms. However, it is unclear why a long period is required to gain clinical immunity to malaria, and how such immunity is maintained. Although malaria infection is reported to induce inhibition of immune responses, studies on asymptomatic individuals living in endemic regions of malaria are relatively scarce.

View Article and Find Full Text PDF

Identifying the genetic determinants of phenotypes that impact disease severity is of fundamental importance for the design of new interventions against malaria. Here we present a rapid genome-wide approach capable of identifying multiple genetic drivers of medically relevant phenotypes within malaria parasites via a single experiment at single gene or allele resolution. In a proof of principle study, we found that a previously undescribed single nucleotide polymorphism in the binding domain of the erythrocyte binding like protein (EBL) conferred a dramatic change in red blood cell invasion in mutant rodent malaria parasites Plasmodium yoelii.

View Article and Find Full Text PDF

Background: Plasmodium falciparum SURFIN is a putative ligand expressed on the merozoite and likely on the infected red blood cell, whose gene was suggested to be under directional selection in the eastern Kenyan population, but under balancing selection in the Thai population. To understand this difference, surf sequences of western Kenyan P. falciparum isolates were analysed.

View Article and Find Full Text PDF

The malaria parasite, Plasmodium, exports protein products to the infected erythrocyte to introduce modifications necessary for the establishment of nutrient acquisition and surface display of host interaction ligands. Erythrocyte remodeling impacts parasite virulence and disease pathology and is well documented for the human malaria parasite Plasmodium falciparum, but has been less described for other Plasmodium species. For P.

View Article and Find Full Text PDF

Background: Rab5 GTPase regulates membrane trafficking between the plasma membrane and endosomes and harbours a conserved C-terminal isoprenyl modification that is necessary for membrane recruitment. Plasmodium falciparum encodes three Rab5 isotypes, and one of these, Rab5b (PfRab5b), lacks the C-terminal modification but possesses the N-terminal myristoylation motif. PfRab5b was reported to localize to the parasite periphery.

View Article and Find Full Text PDF

Calcium (Ca(2+))-mediated signaling is a conserved mechanism in eukaryotes, including the human malaria parasite, Plasmodium falciparum. Due to its small size (<10 μm) measurement of intracellular Ca(2+) in Plasmodium is technically challenging, and thus Ca(2+) regulation in this human pathogen is not well understood. Here we analyze Ca(2+) homeostasis via a new approach using transgenic P.

View Article and Find Full Text PDF
Article Synopsis
  • Plasmodium, the parasite responsible for malaria, modifies infected red blood cells by exporting proteins like SURFIN4.2 to their surfaces, aiding in parasite survival.
  • SURFIN4.2, found on the surface of infected red blood cells, is also associated with Maurer's clefts in the RBC cytoplasm, suggesting these structures assist in transporting the protein.
  • Research shows that the intracellular region of SURFIN4.2, specifically its tryptophan-rich domain, is crucial for its efficient transport to the iRBC surface, as only the full protein form was cleaved by protease treatment.
View Article and Find Full Text PDF

Malaria symptoms and pathogenesis are caused by blood stage parasite burdens of Plasmodium spp., for which invasion of red blood cells (RBCs) by merozoites is essential. Successful targeting by either drugs or vaccines directed against the whole merozoite or its antigens during its transient extracellular status would contribute to malaria control by impeding RBC invasion.

View Article and Find Full Text PDF

Galactose and N-acetyl-D-galactosamine (Gal/GalNAc) inhibitable lectin of Entamoeba histolytica, a common protozoan parasite, has roles in pathogenicity and induction of protective immunity in mouse models of amoebiasis. The lectin consists of heavy (Hgl), light (Lgl), and intermediate (Igl) subunits. Hgl has lectin activity and Lgl does not, but little is known about the activity of Igl.

View Article and Find Full Text PDF

Genetic manipulation is an essential technique to analyze gene function; however, limited methods are available for Babesia bovis, a causative pathogen of the globally important cattle disease, bovine babesiosis. To date, two stable transfection systems have been developed for B. bovis, using selectable markers blasticidin-S deaminase (bsd) or human dihydrofolate reductase (hdhfr).

View Article and Find Full Text PDF

Host cell invasion by Apicomplexan parasites marks a crucial step in disease establishment and pathogenesis. The moving junction (MJ) is a conserved and essential feature among parasites of this phylum during host cell invasion, thus proteins that associate at this MJ are potential targets of drug and vaccine development. In both Toxoplasma gondii and Plasmodium falciparum, a micronemal protein, Apical Membrane Antigen 1 (AMA1), and Rhoptry Neck proteins (RONs; RON2 and RON4) form an essential complex at the MJ.

View Article and Find Full Text PDF

Plasmodium falciparum SURFIN is a type I transmembrane protein that shares domains with molecules expressed on the surface of the red blood cells (RBCs) infected with a variety of malaria parasite species, such as P. falciparum PfEMP1, Plasmodium vivax VIR proteins, and Plasmodium knowlesi SICAvar. Thus, understanding the export mechanism of SURFIN to the RBC may provide fundamental insights into how malaria parasites export their proteins to RBC cytosol in general.

View Article and Find Full Text PDF