Publications by authors named "Kazuaki Nagayama"

Dedifferentiation and aging of vascular smooth muscle cells (VSMCs) are associated with serious vascular diseases, such as arteriosclerosis and aneurysm. However, how cell dedifferentiation and aging affect cellular mechanical behaviors at the single-cell and intracellular structure levels remains unclear. An in-depth understanding of these interactions is extremely important for understanding the mechanism underlying VSMC mechanical integrity and homeostatic regulation of vascular walls.

View Article and Find Full Text PDF

Both mechanical and adhesion properties of cancer cells are complex and reciprocally related to migration, invasion, and metastasis with large cell deformation. Therefore, we evaluated these properties for human cervical cancer cells (HeLa) simultaneously using our previously developed micro tensile tester system. For efficient evaluation, we developed image analysis software to modify the system.

View Article and Find Full Text PDF

Contractile force generated in actomyosin stress fibers (SFs) is transmitted along SFs to the extracellular matrix (ECM), which contributes to cell migration and sensing of ECM rigidity. In this study, we show that efficient force transmission along SFs relies on actin crosslinking by α-actinin. Upon reduction of α-actinin-mediated crosslinks, the myosin II activity induced flows of actin filaments and myosin II along SFs, leading to a decrease in traction force exertion to ECM.

View Article and Find Full Text PDF

Osteogenic differentiation has been reportedly regulated by various mechanical stresses, including fluid shear stress and tensile and compressive loading. The promotion of osteoblastic differentiation by these mechanical stresses is accompanied by reorganization of the F-actin cytoskeleton, which is deeply involved in intracellular forces and the mechanical environment. However, there is limited information about the effect on the mechanical environment of the intracellular nucleus, such as the mechanical properties of the nucleus and intracellular forces exerted on the nucleus, which have recently been found to be directly involved in various cellular functions.

View Article and Find Full Text PDF

Aims: Endothelial-to-mesenchymal transition (EndMT) is a fundamental process in vascular remodelling. However, the precise regulatory mechanism of vascular remodelling during neointima formation and the source of neointima cells are not entirely understood.

Methods And Results: To investigate the origin of neointima cells and their relevance to vascular wall remodelling, we used an endothelial cell (EC)-specific lineage tracing system [VE-Cadherin (Cdh5)-BAC-CreERT2 mice] and carotid artery ligation model and showed evidence that resident ECs transdifferentiate into neointima cells with the expression of CD45.

View Article and Find Full Text PDF
Article Synopsis
  • Tension in stress fibers (SFs) is crucial for various biological processes like cell movement and protein synthesis.
  • Previous research methods using live cells may have inaccurately measured contraction forces due to increased polarized light retardation.
  • This study confirmed that SF contraction leads to increased light retardation regardless of cell activity and found that the density of SFs increases as they contract, leading to a reduction in diameter while maintaining nearly constant length.
View Article and Find Full Text PDF

Proline:arginine (PR) poly-dipeptides from the GGGGCC repeat expansion in have cytotoxicity and bind intermediate filaments (IFs). However, it remains unknown how PR poly-dipeptides affect cytoskeletal organization and focal adhesion (FA) formation. Here, we show that changes to the cytoskeleton and FA by PR poly-dipeptides result in the alteration of cell stiffness and mechanical stress response.

View Article and Find Full Text PDF

Background: Directional cell migration due to mechanosensing for in vivo microenvironment, such as microgrooved surfaces, is an essential process in tissue growth and repair in both normal and pathological states. Cell migration responses on the microgrooved surfaces might be reflected by the cell type difference, which is deeply involved in cellular physiological functions. Although the responses are implicated in focal adhesions (FAs) of cells, limited information is available about cell migration behavior on the microgrooved surfaces whose dimensions are comparable with the size of FAs.

View Article and Find Full Text PDF

Vascular smooth muscle cells (VSMCs) remodel vascular walls actively owing to mechanical cues and dedifferentiate to the synthetic phenotype from contractile phenotype in pathological conditions. It is crucial to clarify the mechanisms behind the VSMC phenotypic transition for elucidating their role in the vascular adaptation and repair and for designing engineered tissues. We recently developed novel micro-grooved collagen substrates with "wavy wrinkle" grooves to induce cell-substrate adhesion, morphological polarization, and a tissue-like cell arrangement with cytoskeletal rearrangements similar to those in vascular tissue in vivo.

View Article and Find Full Text PDF

Many experimental techniques have been reported to provide knowledge of the mechanical behavior of cells from biomechanical viewpoints, however, it is unclear how the intercellular structural differences influence macroscopic and microscopic mechanical properties of cells. The aim of our study is to clarify the comprehensive mechanical properties and cell-substrate adhesion strength of cells, and the correlation with intracellular structure in different cell types. We developed an originally designed micro tensile tester, and performed a single cell tensile test to estimate whole cell tensile stiffness and adhesion strength of normal vascular smooth muscle cells (VSMCs) and cervical cancer HeLa cells: one half side of the specimen cell was lifted up by a glass microneedle, then stretched until the cell detached from the substrate, while force was simultaneously measured.

View Article and Find Full Text PDF

Background: Vascular smooth muscle cells (VSMCs) are one of the main components of arterial walls and actively remodel the arterial walls in which they reside through biomechanical signals applied to themselves. Contractile or differentiated VSMCs have been observed in normal blood vessels. In pathological vascular conditions, they become dedifferentiated from contractile to non-contractile or synthetic cells, and a similar change is observed when VSMCs are placed in culture conditions.

View Article and Find Full Text PDF

The extracellular matrix (ECM) initiates mechanical cues that activate intracellular signaling through matrix-cell interactions. In blood vessels, additional mechanical cues derived from the pulsatile blood flow and pressure play a pivotal role in homeostasis and disease development. Currently, the nature of the cues from the ECM and their interaction with the mechanical microenvironment in large blood vessels to maintain the integrity of the vessel wall are not fully understood.

View Article and Find Full Text PDF

Multipotent stem cells are considered as a key material in regenerative medicine, and the understanding of the heterogeneity in the differentiation potentials of bone marrow-derived cells is important in the successful regenerative tissue repair. Therefore, the present study has been performed to investigate how the differentiation of post-harvest, native bone marrow-derived cells is regulated by cyclic stretch in vitro. Bone marrow-derived cells were obtained from mouse femur of both hind limbs and categorized into the following five categories: amebocytes, round cells, spindle cells, stellate cells and others.

View Article and Find Full Text PDF

Ultraviolet (UV) radiation exerts adverse effects on genome stability, alters the normal state of life, and causes several diseases by inducing DNA damage. Although mechanical stimulation such as stretching has significant effects on the prevention and treatment of diseases, its influence on nuclear morphology and/or intranuclear functions involving resistance to DNA damage remains unknown. Here, we investigated the effects of mechanical stimulation by cyclic stretching on nuclear morphology and resistance of DNA to UV damage in NIH3T3 fibroblasts.

View Article and Find Full Text PDF

Vascular smooth muscle cells (SMCs) actively remodel arterial walls through biomechanical signals and dedifferentiate from the contractile to the synthetic state under pathological conditions. It is important to determine the differentiation mechanism of SMCs to understand their pathophysiology in disease. Previously, we found that the F-actin cytoskeleton in dedifferentiated SMCs on dishes was firmly connected to the nucleus, and that internal mechanical signals in SMCs are transmitted directly to the nucleus, indicating that nuclear-cytoskeletal interactions could be associated with SMC differentiation.

View Article and Find Full Text PDF

Cells change the traction forces generated at their adhesion sites, and these forces play essential roles in regulating various cellular functions. Here, we developed a novel magnetic-driven micropillar array PDMS substrate that can be used for the mechanical stimulation to cellular adhesion sites and for the measurement of associated cellular traction forces. The diameter, length, and center-to-center spacing of the micropillars were 3, 9, and 9 μm, respectively.

View Article and Find Full Text PDF

Bone formation through matrix synthesis and calcification in response to mechanical loading is an essential process of the maturation in immature animals, although how mechanical loading applied to the tissue increases the calcification and improves mechanical properties, and which directions the calcification progresses within the tissue are largely unknown. To address these issues, we investigated the calcification of immature chick bone under static tensile stretch using a newly developed real-time observation bioreactor system. Bone slices perpendicular to the longitudinal axis obtained from the tibia in 2- to 4-day-old chick legs were cultured in the system mounted on a microscope, and their calcification was observed up to 24 h while they were stretched in the direction parallel to the slice.

View Article and Find Full Text PDF

Mechanical interaction of cell with extracellular environment affects its function. The mechanisms by which mechanical stimuli are sensed and transduced into biochemical responses are still not well understood. Considering this, two finite element (FE) bendo-tensegrity models of a cell in different states are proposed with the aim to characterize cell deformation under different mechanical loading conditions: a suspended cell model elucidating the global response of cell in tensile test simulation and an adherent cell model explicating its local response in atomic force microscopy (AFM) indentation simulation.

View Article and Find Full Text PDF

Thrombus formation on biomaterial surfaces with microstructures is complex and not fully understood. We have studied the micro-secondary flow around microstructures that causes components of blood to adhere physically in a low Reynolds number region. The purpose of this study was to investigate the effect of micro-column size on the adhesion phenomena and show a quantitative relationship between the micro-secondary flow and physical adhesion phenomena, considering microstructures of various sizes.

View Article and Find Full Text PDF

Traction forces generated at cellular focal adhesions (FAs) play an essential role in regulating various cellular functions. These forces (1-100 nN) can be measured by observing the local displacement of a flexible substrate upon which cells have been plated. Approaches employing this method include using microfabricated arrays of poly(dimethylsiloxane) (PDMS) micropillars that bend by cellular traction forces.

View Article and Find Full Text PDF

Contribution of mechanical loading to tissue growth during both the development and post-natal maturation is of a particular interest, as its understanding would be important to strategies in bone tissue engineering and regenerative medicine. The present study has been performed to investigate how immature bone responds to mechanical loading using an ex vivo culture system. A slice of the tibia, with the thickness of 3 mm, was obtained from 0-day-old chick.

View Article and Find Full Text PDF

A novel apparatus for the multifaceted evaluation of artery function was developed. It measures endothelial and smooth muscle functions and the pressure-strain elastic modulus (E ). A rigid airtight chamber with an ultrasound probe was attached to the upper arm to manipulate the transmural pressure of the brachial artery.

View Article and Find Full Text PDF

Cell-producing events in developing tissues are mechanically dynamic throughout the cell cycle. In many epithelial systems, cells are apicobasally tall, with nuclei and somata that adopt different apicobasal positions because nuclei and somata move in a cell cycle-dependent manner. This movement is apical during G2 phase and basal during G1 phase, whereas mitosis occurs at the apical surface.

View Article and Find Full Text PDF

Vascular smooth muscle cells (SMCs) undergo a phenotypic change from a contractile to a synthetic state under pathological conditions, such as atherogenesis and restenosis. Although the viscoelastic properties of SMCs are of particular interest because of their role in the development of these vascular diseases, the effects of phenotypic changes on their viscoelastic properties are unclear at this stage. We performed the stress relaxation test at constant strain (ε=30%) for the freshly isolated contractile SMCs (FSMCs) and the cultured synthetic SMCs (CSMCs) maintaining in situ cell shape and cytoskeletal integrity.

View Article and Find Full Text PDF

The interaction between cells and the extracellular matrix on a topographically patterned surface can result in changes in cell shape and many cellular functions. In the present study, we demonstrated the mechanical deformation and trapping of the intracellular nucleus using polydimethylsiloxane (PDMS)-based microfabricated substrates with an array of micropillars. We investigated the differential effects of nuclear deformation on the proliferation of healthy vascular smooth muscle cells (SMCs) and cervical cancer HeLa cells.

View Article and Find Full Text PDF