An all-solid-state fluoride-ion battery (FIB) is one of the promising candidates for the next-generation battery owing to its high energy density and high safety. For the practical application of FIBs, it is an urgent task to operate FIBs at lower temperatures. However, there are still two major difficulties in conventional conversion-type pure metal cathodes: low F ion conductivities and poor cycle stabilities.
View Article and Find Full Text PDFScanning Transmission Electron Microscopy (STEM) enables direct determination of atomic arrangements in materials and devices. However, materials such as battery components are weak for electron beam irradiation and low electron doses are required to prevent beam-induced damages. Noise removal is thus essential for precise structural analysis of electron beam sensitive materials at atomic resolution.
View Article and Find Full Text PDFWith the recent progress in the development of detectors in electron microscopy, it has become possible to directly count the number of electrons per pixel, even with a scintillator-type detector, by incorporating a pulse-counting module. To optimize a denoising method for electron counting imaging, in this study, we propose a Poisson denoising method for atomic-resolution scanning transmission electron microscopy images. Our method is based on the Markov random field model and Bayesian inference, and we can reduce the electron dose by a factor of about 15 times or further below.
View Article and Find Full Text PDFSingle and multi-atoms supported on oxide substrates ultimately increase the efficiency of noble metal atom use, and moreover, catalytic activity and selectivity are also improved substantially. However, single and multi-atoms are unstable under catalytic conditions, and these metal atoms spontaneously aggregate and grow into nanoparticles. Catalytic performance is strongly related to local atomic configurations, and hence, it is essential to determine the three-dimensional (3D) atomic structures of multi-atoms on the substrate and their structural dynamics.
View Article and Find Full Text PDFWe demonstrate the novel growth of silicene grown on Ag(111) using STM and reveal the mechanism with KMC simulation. Our STM study shows that after the complete formation of the first layer of silicene, it is transformed into bulk Si with the reappearance of the bare Ag surface. This dewetting (DW) during the epitaxial growth is an exception in the conventional growth behavior.
View Article and Find Full Text PDFAtomic-resolution electron microscopy imaging of solid-state material is a powerful method for structural analysis. Scanning transmission electron microscopy (STEM) is one of the actively used techniques to directly observe atoms in materials. However, some materials are easily damaged by the electron beam irradiation, and only noisy images are available when we decrease the electron dose to avoid beam damages.
View Article and Find Full Text PDFLithium lanthanum titanate LaLiTiO (LLTO) has the potential to exhibit the highest Li-ion conductivity among oxide-based electrolytes because of the fast Li-ion diffusion derived from its crystal structure. Herein, bulk Li-ion conductivity of up to σ = 4.0 × 10 S/cm at 300 K, which is approximately three to four times higher than that of LLTO polycrystals, was demonstrated using LLTO single crystals, and their dependence on crystal domain orientation was examined.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2022
Spinel LiMnO is an attractive lithium-ion battery cathode material that undergoes a complex series of structural changes during electrochemical cycling that lead to rapid capacity fading, compromising its long-term performance. To gain insights into this behavior, in this report we analyze changes in epitaxial LiMnO thin films during the first few charge-discharge cycles with atomic resolution and correlate them with changes in the electrochemical properties. Impedance spectroscopy and scanning transmission electron microscopy are used to show that defect-rich LiMnO surfaces contribute greatly to the increased resistivity of the battery after only a single charge.
View Article and Find Full Text PDFThe surface of metal oxides is of technological importance and is extensively used as a substrate for various electronic and chemical applications. A real surface, however, is not a perfectly well-defined and clean surface, but rather contains a diverse class of atomistic defects. Here, we show the direct determination of the 3D surface atomic structure of SrTiO (001) including termination layers and atomistic defects such as vacancies, adatoms, ledges, kinks, and their complex combinations, by using depth sectioning of atomic-resolution annular dark-field scanning transmission electron microscopy (ADF STEM).
View Article and Find Full Text PDFWeyl semimetals (WSMs) are classified into two types, type I and II, according to the topology of the Weyl point, where the electron and hole pockets touch each other. Tungsten ditelluride (WTe) has garnered a great deal of attention as a strong candidate to be a type-II WSM. However, the Weyl points for WTe are located above the Fermi level, which has prevented us from identifying the locations and the connection to the Fermi arc surface states by using angle-resolved photoemission spectroscopy.
View Article and Find Full Text PDFWe demonstrate that silicene, a 2D honeycomb lattice consisting of Si atoms, loses its Dirac fermion characteristics due to substrate-induced symmetry breaking when synthesized on the Ag(111) surface. No Landau level sequences appear in the tunneling spectra under a magnetic field, and density functional theory calculations show that the band structure is drastically modified by the hybridization between the Si and Ag atoms. This is the first direct example demonstrating the lack of Dirac fermions in a single layer honeycomb lattice due to significant symmetry breaking.
View Article and Find Full Text PDF