Publications by authors named "Kaziro Y"

A 3(')-terminal fragment of a splice variant of KIAA0641, a human homologue of apoptosis-associated tyrosine kinase (AATYK), was screened from human brain cDNA libraries by a yeast two-hybrid system using a Cdk5 activator p35 as a bait. The cloned cDNA encoded 477 amino acids, composed of internal 458 amino acids of KIAA0641 and 19 amino acids unique to this variant after splicing, then referred to this clone as hAATYKs-p35BP (human AATYK short isoform-p35 binding polypeptide). Using GST-fusion protein, hAATYKs-p35BP was shown to bind to Cdk5/p35 in a rat brain extract.

View Article and Find Full Text PDF

G protein-coupled inward rectifiers (GIRKs) are activated directly by G protein betagamma subunits, whereas classical inward rectifiers (IRKs) are constitutively active. We found that a glutamate residue of GIRK2 (E315), located on a hydrophobic domain of the C terminus, is crucial for the channel activation. This glutamate (or aspartate) residue is conserved in all members of the Kir family.

View Article and Find Full Text PDF

RNA aptamers with affinity for the Ras-binding domain (RBD) of Raf-1 were isolated from a degenerate pool by in vitro selection. These aptamers efficiently inhibited the Ras interaction with the Raf-1 RBD, and also inhibited Ras-induced Raf-1 activation in a cell-free system. The RNA aptamer with the most potent inhibitory effect specifically inhibited the Ras-Raf-1 interaction and had no affinity for the RBD of the RGL protein, a homolog of the Ral GDP dissociation stimulator.

View Article and Find Full Text PDF

G-protein-coupled receptors (GPCRs) typically activate c-Jun N-terminal kinase (JNK) through the G protein betagamma subunit (Gbetagamma), in a manner dependent on Rho family small GTPases, in mammalian cells. Here we show that JNK activation by the prototypic Gq-coupled alpha1B-adrenergic receptor is mediated by the alpha subunit of Gq (Galphaq), not by Gbetagamma, using a transient transfection system in human embryonic kidney cells. JNK activation by the alpha1B-adrenergic receptor/Galphaq was selectively mediated by mitogen-activated protein kinase kinase 4 (MKK4), but not MKK7.

View Article and Find Full Text PDF

The mechanism of Ras-induced Raf-1 activation is not fully understood. Previously, we identified a 400-kDa protein complex as a Ras-dependent Raf-1 activator. In this study, we identified B-Raf as a component of this complex.

View Article and Find Full Text PDF

The tyrosine kinase ACK1 phosphorylates and activates the guanine nucleotide exchange factor Dbl, which in turn directs the Rho family GTP-binding proteins. However, the regulatory mechanism of ACK1/Dbl signaling in response to extracellular stimuli remains poorly understood. Here we describe that epidermal growth factor stimulates the ACK1/Dbl pathway, leading to actin cytoskeletal rearrangements.

View Article and Find Full Text PDF

Heterotrimeric G protein G(q) stimulates the activity of p38 mitogen-activated protein kinase (MAPK) in mammalian cells. To investigate the signaling mechanism whereby alpha and betagamma subunits of G(q) activate p38 MAPK, we introduced kinase-deficient mutants of mitogen-activated protein kinase kinase 3 (MKK3), MKK4, and MKK6 into human embryonal kidney 293 cells. The activation of p38 MAPK by Galpha(q) and Gbetagamma was blocked by kinase-deficient MKK3 and MKK6 but not by kinase-deficient MKK4.

View Article and Find Full Text PDF

We have found the gene for a translation elongation factor Tu (EF-Tu) homologue in the genome of the nematode Caenorhabditis elegans. Because the corresponding protein was detected immunologically in a nematode mitochondrial (mt) extract, it could be regarded as a nematode mt EF-Tu. The protein possesses an extension of about 57 amino acids (we call this domain 3') at the C terminus, which is not found in any other known EF-Tu.

View Article and Find Full Text PDF

Certain G protein-coupled receptors (GPCRs) stimulate the activities of c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK), members of the MAPK family. We investigated the role of JNK and p38 MAPK activation induced by the alpha1B-adrenergic receptor in the proliferation of human embryonic kidney 293T cells. Activation of the alpha1B-adrenergic receptor resulted in inhibition of cell proliferation.

View Article and Find Full Text PDF

Ral has been shown to act downstream of Ras oncoprotein. However, the role of Ral in Ras-induced cellular transformation has not been fully understood. To test the involvement of Ral in Ras-induced anchorage-independent growth, we ectopically expressed Ral mutants in HT1080 cells, whose ability to grow in the absence of anchorage depends on the oncogenic mutation of N-ras.

View Article and Find Full Text PDF

Background: The proliferation of mammalian cells is controlled by various intracellular mitogenic signalling pathways. In the intracellular pathways, Ras is involved in the activation of proto-oncogenes such as an immediate early gene c-fos. The somatic mutations of ras genes that elicit the constitutive activation of Ras have been found in tumours.

View Article and Find Full Text PDF

In a search for key molecules that prevent murine M1 leukemia cells from undergoing interleukin (IL)-6-induced differentiation into macrophages, we isolated an antisense complementary DNA (cDNA) that encodes full-length mouse MgcRac-GTPase-activating protein (GAP) through functional cloning. Forced expression of this antisense cDNA profoundly inhibited IL-6-induced differentiation of M1 cells into macrophage lineages. We also isolated a full-length human MgcRacGAP cDNA, which encodes an additional N-terminal polypeptide of 105 amino acid residues compared with the previously published human MgcRacGAP.

View Article and Find Full Text PDF

Ras-GRF1 is a brain-specific guanine nucleotide exchange factor (GEF) for Ras, whose activity is regulated in response to Ca(2+) influx and G protein-coupled receptor signals. In addition, Ras-GRF1 acts as a GEF for Rac when tyrosine-phosphorylated following G protein-coupled receptor stimulation. However, the mechanisms underlying the regulation of Ras-GRF1 functions remain incompletely understood.

View Article and Find Full Text PDF

In skeletal myoblasts, Ras has been considered to be a strong inhibitor of myogenesis. Here, we demonstrate that Ras is involved also in the chemotactic response of skeletal myoblasts. Expression of a dominant-negative mutant of Ras inhibited chemotaxis of C2C12 myoblasts in response to basic fibroblast growth factor (bFGF), hepatocyte growth factor (HGF), and insulin-like growth factor 1 (IGF-1), key regulators of limb muscle development and skeletal muscle regeneration.

View Article and Find Full Text PDF

Thrombin has been shown to inhibit skeletal muscle differentiation. However, the mechanisms by which thrombin represses myogenesis remain unknown. Since the thrombin receptor couples to G(i), G(q/11) and G(12), we examined which subunits of heterotrimeric guanine nucleotide-binding regulatory proteins (Galpha(i), Galpha(q/11), Galpha(12) or Gbetagamma) participate in the thrombin-induced inhibition of C2C12 myoblast differentiation.

View Article and Find Full Text PDF

Most of the proteins in the Ras-family proteins, including Ras, Rap and TC21, have been reported to be strong inhibitors of skeletal myogenesis. Here we show that R-Ras, another member of this family, promotes terminal differentiation of C2C12 skeletal myoblasts. In contrast to Ras, which induced a markedly transformed phenotype of C2C12 cells, an activated mutant of R-Ras (R-RasQ87L) did not exhibit any inhibitory effect on the differentiation of C2C12 cells, but enhanced the formation of multinucleated myotubes.

View Article and Find Full Text PDF

Heterotrimeric G proteins stimulate the activities of two stress-activated protein kinases, c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase in mammalian cells. In this study, we examined whether alpha subunits of G(i) family activate JNK using transient expression system in human embryonal kidney 293 cells. Constitutively activated mutants of Galpha(i1), Galpha(i2), and Galpha(i3) increased JNK activity.

View Article and Find Full Text PDF

Ras-GRF1/CDC25(Mm) has been implicated as a Ras-guanine nucleotide exchange factor (GEF) expressed in brain. Ras-GEF activity of Ras-GRF1 is augmented in response to Ca(2+) influx and G protein betagamma subunit (Gbetagamma) stimulation. Ras-GRF1 also acts as a GEF toward Rac, but not Rho and Cdc42, when activated by Gbetagamma-mediated signals.

View Article and Find Full Text PDF

Although it is well established that Ras requires membrane localization for activation of its target molecule, Raf-1, the reason for this requirement is not fully understood. In this study, we found that modified Ras, which is purified from Sf9 cells, could activate Raf-1 in a cell-free system, when incorporated into liposome. Using a bifunctional cross-linker and a protein-fragmentation complementation assay, we detected dimer formation of Ras in the liposome and in the intact cells, respectively.

View Article and Find Full Text PDF

Signals triggered by diverse receptors modulate the activity of Rho family proteins, although the regulatory mechanism remains largely unknown. On the basis of their biochemical activity as guanine nucleotide exchange factors (GEFs), Dbl family proteins are believed to be implicated in the regulation of Rho family GTP-binding proteins in response to a variety of extracellular stimuli. Here we show that GEF activity of full-length proto-Dbl is enhanced upon tyrosine phosphorylation.

View Article and Find Full Text PDF

In fibroblasts, the G protein alpha subunits Galpha(12) and Galpha(13) stimulate Rho-dependent stress fiber formation and focal adhesion assembly, whereas G protein betagamma subunits instead exert a disruptive influence. We show here that the latter can, however, stimulate the formation of stress fibers and focal adhesions in epithelial-like HeLa cells. Transient expression of beta(1) with gamma(2), gamma(5), gamma(7), and gamma(12) in quiescent HeLa cells induced stress fiber formation and focal adhesion assembly as did expression of the constitutively active Galpha(12).

View Article and Find Full Text PDF

In hematopoietic cells, Ras has been implicated in signaling pathways that prevent apoptosis triggered by deprivation of cytokines, such as interleukin-3 (IL-3). However, the mechanism whereby Ras suppresses cell death remains incompletely understood. We have investigated the role of Ras in IL-3 signal transduction by using the cytokine-dependent BaF3 cell line.

View Article and Find Full Text PDF

The G protein-coupled inward rectifier K(+) channel (GIRK) is activated by direct interaction with the heterotrimeric GTP-binding protein betagamma subunits (Gbetagamma). However, the precise role of Gbeta and Ggamma in GIRK activation remains to be elucidated. Using transient expression of GIRK1, GIRK2, Gbeta1, and Ggamma2 in human embryonic kidney 293 cells, we show that C-terminal mutants of Gbeta1, which do not bind to Ggamma2, are still able to associate with GIRK, but these mutants are unable to induce activation of GIRK channels.

View Article and Find Full Text PDF