Publications by authors named "Kazimirova A"

As part of a large human biomonitoring study, we conducted occupational monitoring in a glass fibre factory in Slovakia. Shopfloor workers (n = 80), with a matched group of administrators in the same factory (n = 36), were monitored for exposure to glass fibres and to polycyclic aromatic hydrocarbons (PAHs). The impact of occupational exposure on chromosomal aberrations, DNA damage and DNA repair, immunomodulatory markers, and the role of nutritional and lifestyle factors, as well as the effect of polymorphisms in metabolic and DNA repair genes on genetic stability, were investigated.

View Article and Find Full Text PDF

The potential genotoxicity of titanium dioxide (TiO) nanoparticles (NPs) is a conflictive topic because both positive and negative findings have been reported. To add clarity, we have carried out a study with two cell lines (V79-4 and A549) to evaluate the effects of TiO NPs (NM-101), with a diameter ranging from 15 to 60 nm, at concentrations 1-75 μg/cm. Using two different dispersion procedures, cell uptake was determined by Transmission Electron Microscopy (TEM).

View Article and Find Full Text PDF

The comet assay or single cell gel electrophoresis, is the most common method used to measure strand breaks and a variety of other DNA lesions in human populations. To estimate the risk of overall mortality, mortality by cause, and cancer incidence associated to DNA damage, a cohort of 2,403 healthy individuals (25,978 person-years) screened in 16 laboratories using the comet assay between 1996 and 2016 was followed-up. Kaplan-Meier analysis indicated a worse overall survival in the medium and high tertile of DNA damage (p < 0.

View Article and Find Full Text PDF
Article Synopsis
  • DNA damage, particularly from unrepaired double-strand breaks and telomere shortening, leads to chromosomal aberrations (CAs), which are linked to cancer risk and have been monitored in individuals exposed to carcinogens.
  • A study analyzed data on DNA repair genes in individuals with exposure to harmful substances and tobacco, using regression models to find associations between gene polymorphisms and CAs, with over 14 loci identified as significant.
  • Key genes related to DNA repair pathways were highlighted, including those involved in base excision repair, transcription regulation, and mismatch repair, suggesting potential mechanisms for CA formation and the necessity for new methods to assess individual vulnerability to genotoxic agents.
View Article and Find Full Text PDF

The alkaline comet assay, or single cell gel electrophoresis, is one of the most popular methods for assessing DNA damage in human population. One of the open issues concerning this assay is the identification of those factors that can explain the large inter-individual and inter-laboratory variation. International collaborative initiatives such as the hCOMET project - a COST Action launched in 2016 - represent a valuable tool to meet this challenge.

View Article and Find Full Text PDF

Nonspecific structural chromosomal aberrations (CAs) can be found at around 1% of circulating lymphocytes from healthy individuals but the frequency may be higher after exposure to carcinogenic chemicals or radiation. The frequency of CAs has been measured in occupational monitoring and an increased frequency of CAs has also been associated with cancer risk. Alterations in DNA damage repair and telomere maintenance are thought to contribute to the formation of CAs, which include chromosome type of aberrations and chromatid type of aberrations.

View Article and Find Full Text PDF

Genomic instability is a characteristic of a majority of human malignancies. Chromosomal instability is a common form of genomic instability that can be caused by defects in mitotic checkpoint genes. Chromosomal aberrations in peripheral blood are also indicative of genotoxic exposure and potential cancer risk.

View Article and Find Full Text PDF

The genotoxicity of anatase/rutile TiO nanoparticles (TiO NPs, NM105 at 3, 15 and 75 µg/cm) was assessed with the mammalian in-vitro Hypoxanthine guanine phosphoribosyl transferase () gene mutation test in Chinese hamster lung (V79) fibroblasts after 24 h exposure. Two dispersion procedures giving different size distribution and dispersion stability were used to investigate whether the effects of TiO NPs depend on the state of agglomeration. TiO NPs were fully characterised in the previous European FP7 projects NanoTEST and NanoREG2.

View Article and Find Full Text PDF

Non-specific structural chromosomal aberrations (CAs) observed in peripheral blood lymphocytes of healthy individuals can be either chromosome-type aberrations (CSAs) or chromatid-type aberrations (CTAs) depending on the stage of cell division they are induced in and mechanism of formation. It is important to study the genetic basis of chromosomal instability as it is a marker of genotoxic exposure and a predictor of cancer risk. For that purpose, we conducted two genome-wide association studies (GWASs) on healthy individuals in the presence and absence of apparent genotoxic exposure from the Czech Republic and Slovakia.

View Article and Find Full Text PDF

The genotoxicity of TiO nanoparticles (NPs) was assessed with the cytokinesis-block micronucleus (CBMN) assay in TK6 lymphoblastoid cells, lymphocytes from human volunteers, and bone marrow erythrocytes from rats exposed in vivo; and with the comet assay (detecting both strand breaks and oxidised purines) in human and rat peripheral blood mononuclear cells (PBMCs). NPs were dispersed using three different methods giving different size distribution and stability. On average, TiO NPs caused no increase in micronuclei in TK6 cells, rat bone marrow erythrocytes or human lymphocytes (though lymphocytes from 3 out of 13 human subjects showed significant increases).

View Article and Find Full Text PDF

Genotoxicity is associated with serious health effects and includes different types of DNA lesions, gene mutations, structural chromosome aberrations involving breakage and/or rearrangements of chromosomes (referred to as clastogenicity) and numerical chromosome aberrations (referred to as aneuploidy). Assessing the potential genotoxic properties of chemicals, including nanomaterials (NMs), is a key element in regulatory safety assessment. State-of-the-art genotoxicity testing includes a battery of assays covering gene mutations, structural and numerical chromosome aberrations.

View Article and Find Full Text PDF
Article Synopsis
  • This study investigates chromosomal aberrations in human blood as indicators of cancer susceptibility and genotoxic exposure using genetic data from individuals in the Czech Republic and Slovakia.
  • The research analyzed over 2,300 samples across three stages, focusing on the frequency of different types of chromosomal abnormalities and their genetic associations.
  • Key findings include the identification of several genetic loci linked to chromosomal aberrations, which could serve as predictive markers for cancer risk related to environmental factors and genetic susceptibility.
View Article and Find Full Text PDF

Non-specific chromosomal aberrations (CAs) are microscopically detected in about 1% of lymphocytes drawn from healthy persons. Causes of CAs in general population are not known but they may be related to risk of cancer. In view of the importance of the mitotic checkpoint machinery on maintaining chromosomal integrity we selected 9 variants in main checkpoint related genes (BUB1B, BUB3, MAD2L1, CENPF, ESPL1/separase, NEK2, PTTG1/securin, ZWILCH and ZWINT) for a genotyping study on samples from healthy individuals (N = 330 to 729) whose lymphocytes had an increased number of CAs compared to persons with a low number of CAs.

View Article and Find Full Text PDF

Motor vehicle exhaust and non-exhaust processes play a significant role in environmental pollution, as they are a source of the finest particulate matter. Emissions from non-exhaust processes include wear-products of brakes, tires, automotive hardware, road surface, and traffic signs, but still are paid little attention to. Automotive friction composites for brake pads are composite materials which may consist of potentially hazardous materials and there is a lack of information regarding the potential influence of the brake wear debris (BWD) on the environment, especially on human health.

View Article and Find Full Text PDF

Although there is an important set of data showing potential genotoxic effects of nanomaterials (NMs) at the DNA (comet assay) and chromosome (micronucleus test) levels, few studies have been conducted to analyze their potential mutagenic effects at gene level. We have determined the ability of multi-walled carbon nanotubes (MWCNT, NM401), to induce mutations in the HPRT gene in Chinese hamster lung (V79) fibroblasts. NM401, characterized in the EU NanoGenotox project, were further studied within the EU Framework Programme Seven (FP7) project NANoREG.

View Article and Find Full Text PDF

Human cancers are often associated with numerical and structural chromosomal instability. Structural chromosomal aberrations (CAs) in peripheral blood lymphocytes (PBL) arise as consequences of direct DNA damage or due to replication on a damaged DNA template. In both cases, DNA repair is critical and inter-individual differences in its capacity are probably due to corresponding genetic variations.

View Article and Find Full Text PDF

In spite of recent advances in describing the health outcomes of exposure to nanoparticles (NPs), it still remains unclear how exactly NPs interact with their cellular targets. Size, surface, mass, geometry, and composition may all play a beneficial role as well as causing toxicity. Concerns of scientists, politicians and the public about potential health hazards associated with NPs need to be answered.

View Article and Find Full Text PDF

Nonspecific chromosomal aberrations (CAs) are found in about 1% of lymphocytes drawn from healthy individuals. They include chromosome-type aberrations (CSAs), which are increased in exposure to ionizing radiation, and chromatid-type aberrations (CTAs) which in experimental systems are formed by DNA binding carcinogens and mutagens. The frequency of CAs is associated with the risk of cancer, but the causes of CAs in general population are unknown.

View Article and Find Full Text PDF

Climate change is one of the major challenges in the world today. To reduce the amount of CO2 released into the atmosphere, CO2 at major sources, such as power plants, can be captured. Use of aqueous amine solutions is one of the most promising methods for this purpose.

View Article and Find Full Text PDF

Surface coatings of nanoparticles (NPs) are known to influence advantageous features of NPs as well as potential toxicity. Iron oxide (Fe3O4) NPs are applied for both medical diagnostics and targeted drug delivery. We investigated the potential cytotoxicity and genotoxicity of uncoated iron oxide (U-Fe3O4) NPs in comparison with oleate-coated iron oxide (OC-Fe3O4) NPs.

View Article and Find Full Text PDF

Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the presence of antinucleic acid autoantibodies, high levels of circulating type I interferon (IFN-I), and an IFN-I-dependent elevated expression of activating FcγR. Increases in neutrophils and monocytes are often observed in clinical SLE, but how these contribute to autoantibody and IFN-I production is poorly understood. Here, we analyzed SLE pathogenesis in 564Igi mice, an SLE-model strain carrying gene-targeted heavy and light chain antibody genes encoding an anti-RNA autoantibody in a C57BL/6 background.

View Article and Find Full Text PDF

A human blood cell model for immunotoxicity and genotoxicity testing was used to measure the response to polylactic-co-glycolic acid (PLGA-PEO) nanoparticle (NP) (0.12, 3, 15 and 75 μg/cm(2) exposure in fresh peripheral whole blood cultures/isolated peripheral blood mononuclear cell cultures from human volunteers (n = 9-13). PLGA-PEO NPs were not toxic up to dose 3 μg/cm(2); dose of 75 μg/cm(2) displays significant decrease in [(3)H]-thymidine incorporation into DNA of proliferating cells after 4 h (70% of control) and 48 h (84%) exposure to NPs.

View Article and Find Full Text PDF

Immunotherapeutic herpes simplex virus 2 (HSV-2) vaccine efficacy depends upon the promotion of antigen-specific immune responses that inhibit reactivation or reactivated virus, thus controlling both recurrent lesions and viral shedding. In the present study, a candidate subunit vaccine, GEN-003/MM-2, was evaluated for its ability to induce a broad-spectrum immune response in mice and therapeutic efficacy in HSV-2-infected guinea pigs. GEN-003 is comprised of HSV-2 glycoprotein D2 (gD2ΔTMR340-363) and a truncated form of infected cell polypeptide 4 (ICP4383-766), formulated with Matrix M-2 (MM-2) adjuvant (GEN-003/MM-2).

View Article and Find Full Text PDF

The in vitro genotoxicity of PLGA-PEO (poly-lactic-co-glycolic acid-polyethylene oxide copolymer) nanoparticles was assessed in TK6 cells using the comet assay as well as cytokinesis-block micronucleus (CBMN) assay. The cells were exposed to 0.12-75μg/cm² of PLGA-PEO nanoparticles during 2 and 24h for analysis in the comet assay, and to 3-75μg/cm² of these nanoparticles during 4, 24, 48 and 72h, respectively, for analysis in the CBMN assay.

View Article and Find Full Text PDF