Publications by authors named "Kazimieras Badokas"

Antimicrobial photoinactivation (API) has shown some promise in potentially treating different nosocomial bacterial infections, however, its application on staphylococci, especially other than or methicillin-resistant (MRSA) species is still limited. Although is a well-known and important nosocomial pathogen, several other species of the genus, particularly coagulase-negative (CNS) species such as and , can also cause healthcare-associated infections and foodborne intoxications. CNS are often involved in resilient biofilm formation on medical devices and can cause infections in patients with compromised immune systems or those undergoing invasive procedures.

View Article and Find Full Text PDF

Epitaxial lateral overgrowth (ELO) of GaN epilayers on a sapphire substrate was studied by using a laser-patterned graphene interlayer. Monolayer graphene was transferred onto the sapphire substrate using a wet transfer technique, and its quality was confirmed by Raman spectroscopy. The graphene layer was ablated using a femtosecond laser, which produced well-defined patterns without damaging the underlying sapphire substrate.

View Article and Find Full Text PDF

is a dangerous hospital pathogen primarily due to its ability to form biofilms on different abiotic and biotic surfaces. The present study investigated the effect of riboflavin- and chlorophyllin-based antimicrobial photodynamic therapy, performed with near-ultraviolet or blue light on the viability of bacterial cells in biofilms and their structural stability, also determining the extent of photoinduced generation of intracellular reactive oxygen species as well as the ability of to form biofilms after the treatment. The efficacy of antimicrobial photodynamic therapy was compared with that of light alone and the role of the photosensitizer type on the photosensitization mechanism was demonstrated.

View Article and Find Full Text PDF

Some spp. are globally emerging opportunistic pathogens that can be dangerous to individuals with underlying medical conditions and for those who are immunocompromised. Gram-negative spp.

View Article and Find Full Text PDF

The remote epitaxy of GaN epilayers on GaN/sapphire templates was studied by using different graphene interlayer types. Monolayer, bilayer, double-stack of monolayer, and triple-stack of monolayer graphenes were transferred onto GaN/sapphire templates using a wet transfer technique. The quality of the graphene interlayers was examined by Raman spectroscopy.

View Article and Find Full Text PDF

Foodborne pathogens are frequently associated with risks and outbreaks of many diseases; therefore, food safety and processing remain a priority to control and minimize these risks. In this work, nisin-loaded magnetic nanoparticles were used and activated by alternating 10 and 125 mT (peak to peak) magnetic fields (AMFs) for biocontrol of bacteria a suitable model to study the inactivation of common foodborne pathogen It was shown that features high resistance to nisin-based bioactive nanoparticles, however, application of AMFs (15 and 30 min exposure) significantly potentiates the treatment resulting in considerable log reduction of viable cells. The morphological changes and the resulting cellular damage, which was induced by the synergistic treatment, was confirmed using scanning electron microscopy.

View Article and Find Full Text PDF

Wide bandgap AlGaN is one of the most promising materials for the fabrication of radiation hard, double-response particle detectors for future collider facilities. However, the formation of defects during growth and fabrication of AlGaN-based devices is unavoidable. Furthermore, radiation defects are formed in detector structures during operation at extreme conditions.

View Article and Find Full Text PDF

Successful transition to commercialization and practical implementation of nanotechnology innovations may very well need device designs that are tolerant to the inherent variations and imperfections in all nanomaterials including carbon nanotubes, graphene, and others. As an example, a single-walled carbon nanotube network based gas sensor is promising for a wide range of applications such as environment, industry, and biomedical and wearable devices due to its high sensitivity, fast response, and low power consumption. However, a long-standing issue has been the production of extremely high purity semiconducting nanotubes, thereby contributing to the delay in the market adoption of those sensors.

View Article and Find Full Text PDF