Publications by authors named "Kazima B Bulayeva"

Article Synopsis
  • Subcortical brain structures play key roles in motion, emotions, learning, and consciousness, and their volumes are influenced by genetic variations.
  • A study analyzed nearly 40,000 individuals, discovering that variations in the volumes of key brain regions are heritable and identified 48 genetic loci linked to these volumes, with 40 being previously unknown.
  • The identified genes are connected to various biological processes, suggesting they could be crucial for understanding brain development, neurological disorders, and possible drug targets.
View Article and Find Full Text PDF
Article Synopsis
  • - The hippocampal formation is crucial for memory, navigation, and stress response, and its structural abnormalities are linked to various neuropsychiatric disorders.
  • - A genome-wide association study involving over 33,000 individuals identified six genetic loci related to hippocampal volume, including four that are new discoveries associated with specific genes.
  • - The study also reveals that genetic variants that result in smaller hippocampal volumes correlate with a higher risk of developing Alzheimer's disease, highlighting potential biological pathways related to mental health.
View Article and Find Full Text PDF

Intracranial volume reflects the maximally attained brain size during development, and remains stable with loss of tissue in late life. It is highly heritable, but the underlying genes remain largely undetermined. In a genome-wide association study of 32,438 adults, we discovered five previously unknown loci for intracranial volume and confirmed two known signals.

View Article and Find Full Text PDF
Article Synopsis
  • The ENIGMA Consortium is a global collaboration of over 500 scientists focused on studying the brain through brain imaging, clinical, and genetic data, initially aimed at identifying genetic influences on brain measures.
  • ENIGMA has expanded to over 30 working groups investigating 12 major brain diseases, revealing consistent disease effects on the brain globally and identifying genetic loci linked to brain volumes.
  • The consortium aims to generate normative data that will help detect deviations in brain structure and function across various populations, while also addressing the challenges and opportunities of applying findings to individual patients and new groups.
View Article and Find Full Text PDF

As a result of the combination of great linguistic and cultural diversity, the highland populations of Daghestan present an excellent opportunity to test the hypothesis of language-gene coevolution at a fine geographic scale. However, previous genetic studies generally have been restricted to uniparental markers and have not included many of the key populations of the region. To improve our understanding of the genetic structure of Daghestani populations and to investigate possible correlations between genetic and linguistic variation, we analyzed ~550,000 autosomal single nucleotide polymorphisms, phylogenetically informative Y chromosome markers and mtDNA haplotypes in 21 ethnic Daghestani groups.

View Article and Find Full Text PDF

The highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts.

View Article and Find Full Text PDF

Isolated populations are valuable resources for mapping disease genes, as inbreeding increases genome-wide homozygosity and enhances the ability to map disease alleles on a genetically uniform background within a relatively homogenous environment. The populations of Daghestan are thought to have resided in the Caucasus Mountains for hundreds of generations and are characterized by a high prevalence of certain complex diseases. To explore the extent to which their unique population history led to increased levels of inbreeding, we genotyped >550 000 autosomal single-nucleotide polymorphisms (SNPs) in a set of 14 population isolates speaking Nakh-Daghestanian (ND) languages.

View Article and Find Full Text PDF

Genetic isolates are exceptional resources for the detection of susceptibility genes for complex diseases because of the potential reduction in genetic and clinical heterogeneity. However, the outcome of these mapping efforts is dependent upon the demographic history of a given isolated population, with the most significant factors being a constant population size, the number of generations since founding, and the pathogenic loci and their allele frequencies among founders. Here we employed a cross-isolate genome-wide multipoint linkage study design using uniform genetic and clinical methods in four Daghestan ethnically and demographically diverse isolates with an aggregation of schizophrenia.

View Article and Find Full Text PDF

Aim: To assess genetic diversity and genetic distances among isolated populations from Dagestan.

Methods: A cross-population genetic epidemiology design was applied in ethnically and demographically diverse isolates from Dagestan, some with more than 200 and some with less than 100 generations of demographical history since their founding.

Results: The analysis of genetic diversity showed that Dagestan ethnic populations are clearly close to European ethnic populations.

View Article and Find Full Text PDF

Genetic isolates, which provide outstanding opportunities for identification of susceptibility genes for complex diseases, can be classified as primary (having an ancient demographic history in a stable environment) or secondary (having a younger demographic history) Neel [1992: Minority populations: Genetics, demography, and health, pp. 1-13]. Daghestan contains 26 out of 50 indigenous Caucasus ethnicities that have been in existence for hundreds of generations in the same highland region.

View Article and Find Full Text PDF