The structural evolution of black arsenic-phosphorous (b-AsP) alloys with varying arsenic concentrations was investigated under hydrostatic pressure usingRaman spectroscopy. High-pressure experiments were conducted using a diamond anvil cell, which revealed pressure-induced shifts in vibrational modes associated with P-P bonds (,,B2g), As-As bonds (,,B2g), and As-P bonds in b-AsPalloys. Two distinct pressure regimes were observed.
View Article and Find Full Text PDFHuman induced pluripotent stem cell derived brain organoids have shown great potential for studies of human brain development and neurological disorders. However, quantifying the evolution of the electrical properties of brain organoids during development is currently limited by the measurement techniques, which cannot provide long-term stable 3D bioelectrical interfaces with developing brain organoids. Here, a cyborg brain organoid platform is reported, in which "tissue-like" stretchable mesh nanoelectronics are designed to match the mechanical properties of brain organoids and to be folded by the organogenetic process of progenitor or stem cells, distributing stretchable electrode arrays across the 3D organoids.
View Article and Find Full Text PDFTwo-dimensional (2D) polar materials experience an in-plane charge transfer between different elements due to their electron negativities. When they form vertical heterostructures, the electrostatic force triggered by such charge transfer plays an important role in the interlayer bonding beyond van der Waals (vdW) interaction. Our comprehensive first principle study on the structural stability of the 2D SiC/GeC hybrid bilayer heterostructure has found that the electrostatic interlayer interaction can induce the-orbital hybridization between adjacent layers under different stacking and out-of-plane species ordering, with strong hybridization in the cases of Si-C and C-Ge species orderings but weak hybridization in the case of the C-C ordering.
View Article and Find Full Text PDFHuman brain organoids are generated from three-dimensional (3D) cultures of human induced pluripotent stem cells and embryonic stem cells, which partially replicate the development and complexity of the human brain. Many methods have been used to characterize the structural and molecular phenotypes of human brain organoids. Further understanding the electrophysiological phenotypes of brain organoids requires advanced electrophysiological measurement technologies to achieve long-term stable 3D recording over the time course of the organoid development with single-cell, millisecond spatiotemporal resolution.
View Article and Find Full Text PDF