Publications by authors named "Kazi Taheruzzaman"

The plant growth-boosting biofilm-forming bacteria Bacillus pseudomycoides is able to promote growth and drought stress tolerance in wheat by suppressing the MYB gene, which synthesizes Myb protein (TaMpc1-D4) through secreted volatile compounds. In the present study, Triticum aestivum seeds were inoculated with five distinct bacterial strains. The growth, germination rate, root-shoot length, RWC, and chlorophyll content of seedlings were investigated.

View Article and Find Full Text PDF

The phytochemicals of medicinal plants are regarded as a rich source of diverse chemical spaces that have been used as supplements and alternative medicines in the millennium. Even in this era of combinatorial chemical drugs, phytomedicines account for a large share of the statistics of newly approved drugs. In the field of computational aided and rational drug design, there is an urgent need to develop and build a useful phytochemical database management system with a user-friendly interface that allows proper data storage, retrieval and management.

View Article and Find Full Text PDF

Hepatitis B virus infection (HBV) is one of the most common causes of hepatitis, and may lead to cirrhosis or hepatocellular carcinoma. According to the World Health Organization (WHO), approximately 296 million people worldwide are carriers of the hepatitis B virus. Various nucleos(t)ide analogs, which specifically suppress viral replication, are the main treatment agents for HBV infection.

View Article and Find Full Text PDF

Recently, extracellular vesicle (EV)-mediated cell differentiation has gained attention in developmental biology due to genetic exchange between donor cells and recipient cells via transfer of mRNA and miRNA. EVs, also known as exosomes, play a role in maintaining paracrine cell communication and can induce cell proliferation and differentiation. However, it remains unclear whether adipose-derived stem cells (ASCs) can adopt dermal papilla (DP)-like properties with dermal papilla cell-derived extracellular vesicles (DPC-EVs).

View Article and Find Full Text PDF

Atopic dermatitis (AD) is the foremost non-fatal skin-related disease that affects all age groups. Despite the growing prevalence of AD in low- and middle-income countries, its physiological consequences remain overlooked in countries like Bangladesh. Therefore, we aim to assess and characterize the influence of AD on the health-related quality of life (HRQoL) in Bangladeshi patients.

View Article and Find Full Text PDF

The subtype prevalence, drug resistance- and pathogenicity-associated mutations, and the distribution of the influenza A virus (IAV) isolates identified in Bangladesh from 2002 to 2019 were analyzed using bioinformatic tools. A total of 30 IAV subtypes have been identified in humans (4), avian species (29), and environment (5) in Bangladesh. The predominant subtypes in human and avian species are H1N1/H3N2 and H5N1/H9N2, respectively.

View Article and Find Full Text PDF

Dermal papilla cells (DPCs) play crucial roles in hair regeneration, but they readily lose their hair-forming ability during in vitro culture. Although the formation of spheroids partially restores the ability, shrinkage of the spheroids makes it difficult to maintain cellular viability. To address this problem, we stimulated DPCs with factors known to induce adipogenic and/or osteogenic differentiation, because DPCs share unique gene expression profiles with adipocytes and osteocytes.

View Article and Find Full Text PDF

During amphibian metamorphosis, larval-to-adult conversion of the myogenic system occurs and there are two distinct types of muscle stem cells; larval myogenic cells have a death-fate by apoptosis in the presence of thyroid hormone T, and adult myogenic cells have a life-fate under the same conditions. Here, we describe isolation and culture methods for adult and larval myogenic cells from the frog, Xenopus laevis. Both types of cultured myogenic cells undergo cell division and cell differentiation, i.

View Article and Find Full Text PDF

To understand the mechanism of muscle remodeling during Xenopus laevis metamorphosis, we examined the in vitro effect of insulin-like growth factor 1 (IGF-1) on growth and differentiation of three different-fate myogenic cell populations: tadpole tail, tadpole dorsal, and young adult leg muscle. IGF-1 promoted growth and differentiation of both tail and leg myogenic cells only under conditions where these cells could proliferate. Inhibition of cell proliferation by DNA synthesis inhibitor cytosine arabinoside completely canceled the IGF-1's cell differentiation promotion, suggesting the possibility that IGF-1's differentiation-promotion effect is an indirect effect via IGF-1's cell proliferation promotion.

View Article and Find Full Text PDF