We recently described a lightweight, low-power, waterproof filter fluorometer using a 180° backscatter geometry for chlorophyll-a (chl-) detection. Before it was constructed it was modeled to ensure it would have satisfactory performance. This manuscript repeats the modeling process that allows the calibration slope and detection limit for a fluorescent analyte in water to be estimated from system component performance and conventional spectrofluorometry alone.
View Article and Find Full Text PDFWe describe the control and interfacing of a fluorometer designed for aerial drone-based measurements of chlorophyll- using an Arduino Nano 33 BLE Sense board. This 64 MHz controller board provided suitable resolution and speed for analog-to-digital (ADC) conversion, processed data, handled communications via the Robot Operating System (ROS) and included a variety of built-in sensors that were used to monitor the fluorometer for vibration, acoustic noise, water leaks and overheating. The fluorometer was integrated into a small Uncrewed Aircraft System (sUAS) for automated water sampling through a Raspberry Pi master computer using the ROS.
View Article and Find Full Text PDFWe describe a waterproof, lightweight (1.3 kg), low-power (∼1.1 W average power) fluorometer operating on 5 V direct current deployed on a small uncrewed aircraft system (sUAS) to measure chlorophyll and used for triggering environmental water sampling by the sUAS.
View Article and Find Full Text PDF