Publications by authors named "Kazi Morshed Alom"

This study focused on the efficient post-transcriptional incorporation of a modified nucleoside at the end of the poly-A tail of mRNA. The modified mRNA was obtained in high yield and served to enhance protein expression. Utilizing poly-U polymerase, our method successfully enabled a single 2'OMeU residue to be incorporated into mRNA, which unexpectedly provided significant stabilization, even with only a single incorporation, to enhance the resistance of mRNA to degradation by cellular exonuclease.

View Article and Find Full Text PDF

In this report, we present our studies on mRNA, which was modified by introducing various halogen substituents at the C(5) position of the pyrimidine base. Specifically, we synthesized C(5)-halogenated (F, Cl, Br, I) pyrimidine ribonucleoside triphosphates and incorporated them into mRNA during in-vitro transcription. The efficiency of the in-vitro transcription reaction of halogenated pyrimidine was observed to decrease as the size of the halogen substituent increased and the electronegativity thereof decreased (F > Cl > Br) except for iodine.

View Article and Find Full Text PDF

The simultaneous detection of multiple microRNAs (miRNA) is of great necessity but has not been extensively studied. This prompted our study, which involved the development of a triple ligation-based system for detecting three miRNAs at the same time. We designed a multi-ligation-padlock (MLP) probe that consists of three parts, each of which is complementary to two different miRNAs at the same time.

View Article and Find Full Text PDF

In this report, we present a method for the selective and sensitive detection of methyl transferase activity. The method uses a dsDNA probe that contains C3 spacers and is coupled with dUThioTP-TdT polymerase-based poly-tailing. The short dsDNA probe is designed with C3 spacers at both 3' ends to prevent any type of tailing reaction.

View Article and Find Full Text PDF

In this study, we combined a rolling circle transcription (RCT) system producing 22AG G-quadruplex RNA with a QnMorpholine (QNM) fluorescent probe for the selective and sensitive detection of alkaline phosphatase (ALP). ALP is involved in various biological functions, with monophosphate cleavage being one of its characteristic properties. Here, we developed a padlock RCT probing system in which a large amount of RCT 22AG RNA G-quadruplex was produced in the absence of ALP, providing a high fluorescence signal.

View Article and Find Full Text PDF

Herein we report a simple ligation/transcription-mediated system, using a 22AG G-quadruplex RNA secondary structure and a fluorescence-inducing QnMorpholine probe, for the detection of miR-21. In the presence of the target miR-21, two oligonucleotide probes (promoter and reporter) were ligated, thereby transcribing the 22AG RNA sequence, a complement of the reporter probe. In contrast, in the absence of this target-induced ligation, the reporter complement could not be transcribed to produce the 22AG RNA sequence.

View Article and Find Full Text PDF

In this study we developed a fluorescent double-stranded DNA, incorporating an unnatural dU nucleotide, that we used as a probe for the detection of alkaline phosphatase (ALP) based on enzymatic cleavage of the non-fluorescent complementary strand. Primer extension performed using the unnatural nucleotide triphosphate dUTP and the natural deoxynucleotide triphosphates dATP, dCTP, and dGTP provided a simple fluorescent DNA strand that hybridized with the 5́-monophosphate non-fluorescent complementary strand. When applying the 5́-phosphate recognition and cleavage properties of lambda exonuclease (λ-exo), this probe could bind to graphene oxide (GO) and quench the fluorescence (in the absence of ALP) or not bind to GO and retain its fluorescence (in the presence of ALP).

View Article and Find Full Text PDF