Publications by authors named "Kazi Mashfiq Fahmid"

In this study, a hybrid Machine Learning (ML) approach is proposed for Relative Humidity (RH) prediction with a combination of Empirical Mode Decomposition (EMD) to improve the prediction accuracy over the traditional prediction technique using a Machine Learning (ML) algorithm called Support Vector Machine (SVM). The main objective of proposing this hybrid technique is to deal with the extremely nonlinear and noisy humidity pattern in Khulna, Bangladesh, which is experiencing rapid urbanization and environmental change. To develop the model, data on temperature, relative humidity, rainfall, and wind speed were collected from the Bangladesh Meteorological Department (BMD), and the data was divided into three phases: 70 % of the historical dataset as training data for the model, 15 % of the data set as the validation phase, and the remaining 15 % of the data set as the test phase of the model.

View Article and Find Full Text PDF