Publications by authors named "Kazi M Ahmed"

Brain tumor, a leading cause of uncontrolled cell growth in the central nervous system, presents substantial challenges in medical diagnosis and treatment. Early and accurate detection is essential for effective intervention. This study aims to enhance the detection and classification of brain tumors in Magnetic Resonance Imaging (MRI) scans using an innovative framework combining Vision Transformer (ViT) and Gated Recurrent Unit (GRU) models.

View Article and Find Full Text PDF

Previous studies along the banks of the tidal Meghna River of the Ganges-Brahmaputra-Meghna Delta demonstrated the active sequestration of dissolved arsenic (As) on newly formed iron oxide minerals (Fe(III)-oxides) within riverbank sands. The sand with high solid-phase As (>500 mg/kg) was located within the intertidal zone where robust mixing occurs with oxygen-rich river water. Here we present new evidence that upwelling groundwater through a buried silt layer generates the dissolved products of reductive dissolution of Fe(III)-oxides, including As, while mobilization of DOC by upwelling groundwater prevents their reconstitution in the intertidal zone by lowering the redox state.

View Article and Find Full Text PDF

Salinity is a widespread problem along the Asian coast, mainly in reclaimed lands where most people live. These low-lying areas are vulnerable to impacts from tropical cyclone induced storm surges. The role of such surges on the long-term salinity of water resources, particularly the salinisation of drinking water ponds, a key water resource, requires further investigation.

View Article and Find Full Text PDF

The principal nature-based solution for offsetting relative sea-level rise in the Ganges-Brahmaputra delta is the unabated delivery, dispersal, and deposition of the rivers' ~1 billion-tonne annual sediment load. Recent hydrological transport modeling suggests that strengthening monsoon precipitation in the 21st century could increase this sediment delivery 34-60%; yet other studies demonstrate that sediment could decline 15-80% if planned dams and river diversions are fully implemented. We validate these modeled ranges by developing a comprehensive field-based sediment budget that quantifies the supply of Ganges-Brahmaputra river sediment under varying Holocene climate conditions.

View Article and Find Full Text PDF

Groundwater contamination by geogenic arsenic is a global problem affecting nearly 200 million people. In South and Southeast Asia, a cost-effective mitigation strategy is to use oxidized low-arsenic aquifers rather than reduced high-arsenic aquifers. Aquifers with abundant oxidized iron minerals are presumably safeguarded against immediate arsenic contamination, due to strong sorption of arsenic onto iron minerals.

View Article and Find Full Text PDF
Article Synopsis
  • Cisplatin (CDDP) is commonly used to treat advanced head and neck cancers, but many tumors develop resistance through changes in their metabolism.
  • Researchers studied CDDP-resistant cancer cell clones using advanced techniques, revealing that mutations in KEAP1 lead to increased Nrf2 activity, which is linked to drug resistance.
  • The study found that resistant cells show metabolic shifts that reduce energy production while enhancing biomass generation, suggesting new potential treatments could target these specific metabolic pathways.
View Article and Find Full Text PDF

Unlabelled: Tumor suppressor mutations in head and neck squamous cell carcinoma (HNSCC) dominate the genomic landscape, hindering the development of effective targeted therapies. Truncating and missense mutations in NOTCH1 are frequent in HNSCC, and inhibition of PI3K can selectively target NOTCH1 mutant (NOTCH1MUT) HNSCC cells. In this study, we identify several proteins that are differentially regulated in HNSCC cells after PI3K inhibition based on NOTCH1MUT status.

View Article and Find Full Text PDF

Shallow (<30 m) reducing groundwater commonly contains abundant dissolved arsenic (As) in Bangladesh. We hypothesize that dissolved As in iron (Fe)-rich groundwater discharging to rivers is trapped onto Fe(III)-oxyhydroxides which precipitate in shallow riverbank sediments under the influence of tidal fluctuations. Therefore, the goal of this study is to compare the calculated mass of sediment-bound As that would be sequestered from dissolved groundwater As that discharges through riverbanks of the Meghna River to the observed mass of As trapped within riverbank sediments.

View Article and Find Full Text PDF
Article Synopsis
  • The high levels of dissolved arsenic in Bangladesh's shallow aquifers are mainly due to bacteria breaking down arsenic-bearing iron compounds in organic-rich, low-oxygen environments.
  • The interaction between the Meghna River and groundwater forms a natural barrier that helps trap arsenic, which researchers studied by analyzing sediments from both the riverbank and the aquifer.
  • The study found that while both sediment types contained similar elemental compositions, the amounts of iron and arsenic extracted differed significantly, with aquifer sediments releasing much higher concentrations due to variations in the type of organic matter present.
View Article and Find Full Text PDF

Background: The existence of immunologically 'cold tumors' frequently found across a wide spectrum of tumor types represents a significant challenge for cancer immunotherapy. Cold tumors have poor baseline pan-leukocyte infiltration, including a low prevalence of cytotoxic lymphocytes, and not surprisingly respond unfavorably to immune checkpoint (IC) inhibitors. We hypothesized that cold tumors harbor a mechanism of immune escape upstream and independent of ICs that may be driven by tumor biology rather than differences in mutational neoantigen burden.

View Article and Find Full Text PDF

Hyperthermia inhibits DNA double-strand break (DSB) repair that utilizes homologous recombination (HR) pathway by a poorly defined mechanism(s); however, the mechanisms for this inhibition remain unclear. Here we report that hyperthermia decreases H4K16 acetylation (H4K16ac), an epigenetic modification essential for genome stability and transcription. Heat-induced reduction in H4K16ac was detected in humans, , and yeast, indicating that this is a highly conserved response.

View Article and Find Full Text PDF

Arsenic (As) dynamics within the extensively contaminated aquifers of the Ganges River delta have been widely studied over the past few decades, but the hydrogeochemical signatures across the delta aquifers remain to be characterized. Here, we characterize the varied geochemical and isotopic (δO, δH) signatures of groundwater across the delta and interpret the hydrogeochemical evolution pathways and the driving processes on a regional-scale as a function of the delta hydrostratigraphy. Our hydrostratigraphic model identifies three major aquifer sub-systems across the delta from north-west to south-east: a single continuous unconfined aquifer (Type I); a semiconfined vertically-segregated aquifer sub-system (Type II); and a nearly confined multilayered aquifer sub-system (Type III).

View Article and Find Full Text PDF

The episodic outbreak of COVID-19 due to SARS-CoV-2 is severely affecting the economy, and the global count of infected patients is increasing. The actual number of patients had been underestimated due to limited facilities for testing as well as asymptomatic nature of the expression of COVID-19 on individual basis. Tragically, for emerging economies with high population density, the situation has been more complex due to insufficient testing facilities for diagnosis of the disease.

View Article and Find Full Text PDF

This study explores the associations of drinking rainwater with mineral intake and cardiometabolic health in the Bangladeshi population. We pooled 10030 person-visit data on drinking water sources, blood pressure (BP) and 24-h urine minerals. Fasting blood glucose (FBG) was measured in 3724 person-visits, and lipids in 1118 person-visits.

View Article and Find Full Text PDF

The scarcity of arsenic and iron-free safe drinking water is an alarming issue in the southern part of the Bengal Basin. The objectives of the present study were to investigate the spatial distribution of manganese (Mn) concentration in the shallow and deep groundwater and its associated health risks for the children and adults of entire southern Bengal Basin. The Mn concentration in the groundwater varied from 0 to 5.

View Article and Find Full Text PDF

Rice is the primary crop in Bangladesh and rice yield is diminished due to the buildup of arsenic (As) in soil from irrigation with high-As groundwater. Soil testing with an inexpensive kit could help farmers target high-As soil for mitigation or decide to switch to a different crop that is less sensitive to As in soil. A total of 3,240 field kit measurements of As in 0.

View Article and Find Full Text PDF
Article Synopsis
  • Arsenic contamination in groundwater from the Ganges River delta poses significant health risks, with many studies highlighting various factors that contribute to its mobilization and spread.
  • A hybrid modeling approach utilizing statistical methods and AI techniques, such as Random Forest, was developed to assess the probabilities of arsenic concentrations exceeding WHO guidelines for drinking water.
  • The results reveal that surficial aquitard thickness and the extent of groundwater-fed irrigation are key determinants of arsenic levels, with certain regions exhibiting high contamination risks affecting approximately 30.3 million people.
View Article and Find Full Text PDF

Groundwater flow has the potential to introduce arsenic (As) in previously uncontaminated aquifers. The extent to which As transport is retarded by adsorption is particularly relevant in Bangladesh where low-As wells offer the best chance of reducing chronic exposure to As of a large rural population dependent on groundwater. In this study, column experiments were conducted with intact cores in the field to measure As retardation.

View Article and Find Full Text PDF

Background: Drinking-water salinity has been associated with high blood pressure (BP) among communities in south-west coastal Bangladesh. We evaluated whether access to water from managed aquifer recharge (MAR)-a hydrogeological intervention to lower groundwater salinity by infiltrating rainwater into the aquifers-can reduce community BP.

Methods: We conducted a stepped-wedge cluster-randomized trial with five monthly visits between December 2016 and April 2017 in 16 communities.

View Article and Find Full Text PDF

Geogenic arsenic in drinking water is a worldwide problem. For private well owners, testing (e.g.

View Article and Find Full Text PDF

Millions of villagers in Bangladesh are exposed to arsenic by drinking contaminated water from private wells. Testing for arsenic can encourage switching from unsafe wells to safer sources. This study describes results from a cluster randomized controlled trial conducted in 112 villages in Bangladesh to evaluate the effectiveness of different test selling schemes at inducing switching from unsafe wells.

View Article and Find Full Text PDF

Confining clay layers typically protect groundwater aquifers against downward intrusion of contaminants. In the context of groundwater arsenic in Bangladesh, we challenge this notion here by showing that organic carbon drawn from a clay layer into a low-arsenic pre-Holocene (>12 kyr-old) aquifer promotes the reductive dissolution of iron oxides and the release of arsenic. The finding explains a steady rise in arsenic concentrations in a pre-Holocene aquifer below such a clay layer and the repeated failure of a structurally sound community well.

View Article and Find Full Text PDF

Spectrum sensing plays a vital role in cognitive radio networks (CRNs) for identifying the spectrum hole. However, an individual cognitive radio user in a CRN does not obtain sufficient sensing performance and sum rate of the primary and secondary links to support the future Internet of Things (IoT) using conventional detection techniques such as the energy detection (ED) technique in a noise-uncertain environment. In an environment comprising noise uncertainty, the performance of conventional energy detection techniques is significantly degraded owing to the noise fluctuation caused by the noise temperature, interference, and filtering.

View Article and Find Full Text PDF

: We assessed the association of groundwater chemicals with systolic blood pressure (SBP) and diastolic blood pressure (DBP). Blood pressure data for ≥35-year-olds were from the Bangladesh Demographic and Health Survey in 2011. Groundwater chemicals in 3534 well water samples from Bangladesh were measured by the British Geological Survey (BGS) in 1998-1999.

View Article and Find Full Text PDF

Background Sodium (Na) in saline water may increase blood pressure ( BP ), but potassium (K), calcium (Ca), and magnesium (Mg) may lower BP . We assessed the association between drinking water salinity and population BP . Methods and Results We pooled 6487 BP measurements from 2 cohorts in coastal Bangladesh.

View Article and Find Full Text PDF