Publications by authors named "Kazi Afreen"

SARS-CoV-2 is a highly transmissible virus that causes COVID-19 disease. Mechanisms of viral pathogenesis include excessive inflammation and viral-induced cell death, resulting in tissue damage. Here we show that the host E3-ubiquitin ligase TRIM7 acts as an inhibitor of apoptosis and SARS-CoV-2 replication via ubiquitination of the viral membrane (M) protein.

View Article and Find Full Text PDF

SARS-CoV-2 is a highly transmissible virus that causes COVID-19 disease. Mechanisms of viral pathogenesis include excessive inflammation and viral-induced cell death, resulting in tissue damage. We identified the host E3-ubiquitin ligase TRIM7 as an inhibitor of apoptosis and SARS-CoV-2 replication via ubiquitination of the viral membrane (M) protein.

View Article and Find Full Text PDF
Article Synopsis
  • Ubiquitination is a key cellular modification impacting functions like immunity, signaling, and protein stability, and viruses exploit this process to enhance their infection and replication within host cells.
  • Some viruses can carry free ubiquitin or ubiquitinated proteins that facilitate their entry into host cells, showcasing their ability to manipulate the ubiquitin system for their advantage.
  • The review highlights the ongoing conflict between viruses and hosts, emphasizing how viruses hijack ubiquitination throughout their lifecycle and discusses potential antiviral strategies targeting the ubiquitin system.
View Article and Find Full Text PDF

Ebolavirus (EBOV) belongs to a family of highly pathogenic viruses that cause severe hemorrhagic fever in humans. EBOV replication requires the activity of the viral polymerase complex, which includes the cofactor and Interferon antagonist VP35. We previously showed that the covalent ubiquitination of VP35 promotes virus replication by regulating interactions with the polymerase complex.

View Article and Find Full Text PDF

A reliable disease model is critical to the study of specific disease mechanisms as well as for the discovery and development of new drugs. Despite providing crucial insights into the mechanisms of neurodegenerative diseases, translation of this information to develop therapeutics in clinical trials have been unsuccessful. Reprogramming technology to convert adult somatic cells to induced Pluripotent Stem Cells (iPSCs) or directly reprogramming adult somatic cells to induced Neurons (iN), has allowed for the creation of better models to understand the molecular mechanisms and design of new drugs.

View Article and Find Full Text PDF

To elucidate HIV-1 co-infection-induced acceleration of HCV liver disease and identify stage-specific molecular signatures, we applied a new high-resolution molecular screen, the Affymetrix GeneChip Human Transcriptome Array (HTA2.0), to HCV-mono- and HIV/HCV-co-infected liver specimens from subjects with early and advanced disease. Out of 67,528 well-annotated genes, we have analyzed the functional and statistical significance of 75 and 28 genes expressed differentially between early and advanced stages of HCV mono- and HIV/HCV co-infected patient liver samples, respectively.

View Article and Find Full Text PDF