Triple helix forming oligonucleotides (TFOs) may have utility as gene targeting reagents for "in situ" gene therapy of genetic disorders. Triplex formation is challenged by negative charge repulsion between third strand and duplex phosphates, and destabilizing positive charge repulsion between adjacent protonated cytosines within pyrimidine motif third strands. Here we describe the synthesis of TFOs designed to target a site in the human beta-globin gene, which is the locus for mutations that underlie the beta-globinopathies, including sickle cell anemia.
View Article and Find Full Text PDFThe segments C(1)-C(13) and C(15)-C(21) containing the 13 stereogenic centers required for the frame of (+)-discodermolide were synthesized in good to excellent enantio- and diastereoselectivities from a common racemic aldehyde, derived from 2-methyl-1,3-propanediol. The enantioselective aldol reactions of the racemic aldehyde with a silylketene acetal, derived from ethyl 2-bromopropionate, in the presence of chiral oxazaborolidinones, prepared in situ with N-p-toluenesulfonyl-(R)- and -(S)-valine and BH(3).THF, proceeded under kinetic control to give the stereotriads with a high degree of enantioselectivity.
View Article and Find Full Text PDF