Fe-Ca-SAPO-34/CS/PANI, a novel hybrid bio-composite scaffold with potential application in dental tissue engineering, was prepared by freeze drying technique. The scaffold was characterized using FT-IR and SEM methods. The effects of PANI on the physicochemical properties of the Fe-Ca-SAPO-34/CS scaffold were investigated, including changes in swelling ratio, mechanical behavior, density, porosity, biodegradation, and biomineralization.
View Article and Find Full Text PDFBackground: According to recent studies, electrospun Poly (Ɛ-caprolactone) (PCL) is an absorbing candidate for the formulation of biocompatible scaffolds used in tissue engineering. Tissue engineering is a set of techniques for producing or reconstructing tissue, whose primary purpose is to restore or improve the function of tissues in the human body. Tissue engineering combines the principles of materials and cell transplantation to develop alternative tissues or promote endogenous regeneration.
View Article and Find Full Text PDFThis research aimed to design innovative therapeutic bio-composites that enhance odontogenic and osteogenic differentiation of human dental pulp-derived mesenchymal stem cells (h-DPSCs) in-vitro regeneration. Herein, we report the fabrication of scaffolds containing chitosan, Ca-SAPO-34 monometallic and/or Fe-Ca-SAPO-34 bimetallic nanoparticles by freeze-drying technique. The scaffolds and nanoparticles were characterized using ICP-AES, FT-IR, XRD, TGA, TEM, BET, SEM, and EDS methods.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2014
A series of novel imidazo[1,2-a]pyridines possessing 4-pyrone ring were synthesized by three-component condensation of 4-pyrone carbaldehydes, 2-aminopyridines and isocyanides. Bismuth (III) chloride was used as a catalyst in these reactions and desired products were synthesized in good yields at a very short period of time under solvent free conditions. UV-Vis absorption and fluorescence emission spectra of these compounds were investigated.
View Article and Find Full Text PDF