Retrotransposons have generated about half of the human genome and LINE-1s (L1s) are the only autonomously active retrotransposons. The cell has evolved an arsenal of defense mechanisms to protect against retrotransposition with factors we are only beginning to understand. In this study, we investigate Zinc Finger CCHC-Type Containing 3 (ZCCHC3), a gag-like zinc knuckle protein recently reported to function in the innate immune response to infecting viruses.
View Article and Find Full Text PDFAm J Med Genet A
November 2021
Two members of the faculty-who witnessed the birth of Genetic Medicine and remained to see it evolve-present their reflections about the history of genetic medicine at the Johns Hopkins Medical Institutions. They tell how the genetic units in Pediatrics and Medicine that were initiated by Barton Childs and Victor McKusick, respectively, became the McKusick Nathans Department of Genetic Medicine in 2020.
View Article and Find Full Text PDFI have been fortunate and privileged to have participated in amazing breakthroughs in human genetics since the 1960s. I was lucky to have trained in medical school at Dartmouth and Johns Hopkins, in pediatrics at the University of Minnesota and Johns Hopkins, and in genetics and molecular biology with Dr. Barton Childs at Johns Hopkins and Dr.
View Article and Find Full Text PDFSomatic LINE-1 (L1) retrotransposition has been detected in early embryos, adult brains, and the gastrointestinal (GI) tract, and many cancers, including epithelial GI tumors. We previously found numerous somatic L1 insertions in paired normal and GI cancerous tissues. Here, using a modified method of single-cell analysis for somatic L1 insertions, we studied adenocarcinomas of colon, pancreas, and stomach, and found a variable number of somatic L1 insertions in tumors of the same type from patient to patient.
View Article and Find Full Text PDFNine dogs with hemophilia A were treated with adeno-associated viral (AAV) gene therapy and followed for up to 10 years. Administration of AAV8 or AAV9 vectors expressing canine factor VIII (AAV-cFVIII) corrected the FVIII deficiency to 1.9-11.
View Article and Find Full Text PDFAbout half of all cancers have somatic integrations of retrotransposons. Here, to characterize their role in oncogenesis, we analyzed the patterns and mechanisms of somatic retrotransposition in 2,954 cancer genomes from 38 histological cancer subtypes within the framework of the Pan-Cancer Analysis of Whole Genomes (PCAWG) project. We identified 19,166 somatically acquired retrotransposition events, which affected 35% of samples and spanned a range of event types.
View Article and Find Full Text PDFContext: Androgen insensitivity syndrome (AIS) is the most common cause of disorders of sex development in 46,XY individuals. It is an X-linked condition usually caused by pathogenic allelic variants in the androgen receptor (AR) gene. The phenotype depends on the AR variant, ranging from severe undervirilization (complete AIS) to several degrees of external genitalia undervirilization.
View Article and Find Full Text PDFIntroduction: Long interspersed element (LINE)-1 (L1) is a type of retrotransposon capable of mobilizing into new genomic locations. Often studied in Mendelian diseases or cancer, L1s may also cause somatic mutation in the developing central nervous system. Recent reports showed L1 transcription was activated in brains of cocaine-treated mice, and L1 retrotransposition was increased in cocaine-treated neuronal cell cultures.
View Article and Find Full Text PDFLINE-1 (L1) retrotransposons are a noted source of genetic diversity and disease in mammals. To expand its genomic footprint, L1 must mobilize in cells that will contribute their genetic material to subsequent generations. Heritable L1 insertions may therefore arise in germ cells and in pluripotent embryonic cells, prior to germline specification, yet the frequency and predominant developmental timing of such events remain unclear.
View Article and Find Full Text PDFMaintaining genome integrity is important for cells and damaged DNA triggers autoimmunity. Previous studies have reported that Three-prime repair exonuclease 1(TREX1), an endogenous DNA exonuclease, prevents immune activation by depleting damaged DNA, thus preventing the development of certain autoimmune diseases. Consistently, mutations in TREX1 are linked with autoimmune diseases such as systemic lupus erythematosus, Aicardi-Goutières syndrome (AGS) and familial chilblain lupus.
View Article and Find Full Text PDFSquamous cell carcinoma of the esophagus (SCC) is the most common form of esophageal cancer in the world and is typically diagnosed at an advanced stage when successful treatment is challenging. Understanding the mutational profile of this cancer may identify new treatment strategies. Because somatic retrotransposition has been shown in tumors of the gastrointestinal system, we focused on LINE-1 (L1) mobilization as a source of genetic instability in this cancer.
View Article and Find Full Text PDFOver evolutionary time, the dynamic nature of a genome is driven, in part, by the activity of transposable elements (TE) such as retrotransposons. On a shorter time scale it has been established that new TE insertions can result in single-gene disease in an individual. In humans, the non-LTR retrotransposon Long INterspersed Element-1 (LINE-1 or L1) is the only active autonomous TE.
View Article and Find Full Text PDFMethods Mol Biol
December 2016
Almost two-thirds of the human genome is repetitive DNA, mostly derived from different kinds of transposon and retrotransposon sequences. Although most of these sequences are stable in the genome, one class called long interspersed element (LINE1 or L1) is actively jumping in the human genome, particularly in brain, germ cells, and certain types of cancer. Recent estimates predict that L1 activity combined with L1-mediated activity is responsible for a new insertion in 1 out of 25 newborns.
View Article and Find Full Text PDFL1-seq is a high-throughput sequencing technique which is utilized to identify novel L1 insertions in genomic DNA samples of interest. Using special diagnostic nucleotides unique to the youngest and most active L1 sequence, we can amplify new somatic insertions. This technique has helped to establish the number of L1 insertions present in the general population as well as the variation among individuals with regard to their complement of active L1 elements.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2015
Barrett's esophagus (BE) is a common disease in which the lining of the esophagus transitions from stratified squamous epithelium to metaplastic columnar epithelium that predisposes individuals to developing esophageal adenocarcinoma (EAC). We hypothesized that BE provides a unique environment for increased long-interspersed element 1 (LINE-1 or L1) retrotransposition. To this end, we evaluated 5 patients with benign BE, 5 patients with BE and concomitant EAC, and 10 additional patients with EAC to determine L1 activity in this progressive disease.
View Article and Find Full Text PDFSomatic L1 retrotransposition events have been shown to occur in epithelial cancers. Here, we attempted to determine how early somatic L1 insertions occurred during the development of gastrointestinal (GI) cancers. Using L1-targeted resequencing (L1-seq), we studied different stages of four colorectal cancers arising from colonic polyps, seven pancreatic carcinomas, as well as seven gastric cancers.
View Article and Find Full Text PDFIntrinsic immunity describes the set of recently discovered but poorly understood cellular mechanisms that specifically target viral pathogens. Their discovery derives in large part from intensive studies of HIV and SIV that revealed restriction factors acting at various stages of the retroviral life cycle. Recent studies indicate that some factors restrict both retroviruses and retrotransposons but surprisingly in ways that may differ.
View Article and Find Full Text PDFProcessed pseudogenes are copies of messenger RNAs that have been reverse transcribed into DNA and inserted into the genome using the enzymatic activities of active L1 elements. Processed pseudogenes generally lack introns, end in a 3' poly A, and are flanked by target site duplications. Until recently, very few polymorphic processed pseudogenes had been discovered in mammalian genomes.
View Article and Find Full Text PDF