Our understanding of mitochondrial signaling in the nervous system has been limited by the technical challenge of analyzing mitochondrial function in vivo. In the transparent genetic model we were able to manipulate and measure mitochondrial reactive oxygen species (mitoROS) signaling of individual mitochondria as well as neuronal activity of single neurons in vivo. Using this approach, we provide evidence supporting a novel role for mitoROS signaling in dendrites of excitatory glutamatergic interneurons.
View Article and Find Full Text PDFProtein kinase C (PKC) functions are essential for synaptic plasticity, learning, and memory. However, the roles of specific members of the PKC family in synaptic function, learning, and memory are poorly understood. Here, we investigated the role of individual PKC homologs for synaptic plasticity in and found a differential role for and , but not and in associative olfactory learning and memory.
View Article and Find Full Text PDFCalcium (Ca) imaging has been largely used to examine neuronal activity, but it is becoming increasingly clear that subcellular Ca handling is a crucial component of intracellular signaling. The visualization of subcellular Ca dynamics in vivo, where neurons can be studied in their native, intact circuitry, has proven technically challenging in complex nervous systems. The transparency and relatively simple nervous system of the nematode Caenorhabditis elegans enable the cell-specific expression and in vivo visualization of fluorescent tags and indicators.
View Article and Find Full Text PDFCardiac dysfunction is a common phenotypic manifestation of primary mitochondrial disease with multiple nuclear and mitochondrial DNA pathogenic variants as a cause, including disorders of mitochondrial translation. To date, five patients have been described with pathogenic variants in MRPL44, encoding the ml44 protein which is part of the large subunit of the mitochondrial ribosome (mitoribosome). Three presented as infants with hypertrophic cardiomyopathy, mild lactic acidosis, and easy fatigue and muscle weakness, whereas two presented in adolescence with myopathy and neurological symptoms.
View Article and Find Full Text PDFGenetic defects in mitochondrial DNA encoded tRNA genes impair mitochondrial translation with resultant defects in the mitochondrial respiratory chain and oxidative phosphorylation system. The phenotypic spectrum of disease seen in mitochondrial tRNA defects is variable and proving pathogenicity of new variants is challenging. Only three pathogenic variants have been described previously in the mitochondrial tRNA gene MT-TY, with the reported phenotypes consisting largely of adult onset myopathy and ptosis.
View Article and Find Full Text PDFDiagnosing complex V deficiencies caused by new variants in mitochondrial DNA is challenging due to the rarity, phenotypic diversity, and limited functional assessments. We describe a child with the m.9032T > C variant in MT-ATP6 encoding p.
View Article and Find Full Text PDFDisorders of the white matter are genetically very heterogeneous including several genes involved in mitochondrial bioenergetics. Diagnosis of the underlying cause is aided by pattern recognition on neuroimaging and by next-generation sequencing. Recently, genetic changes in the complex I assembly factor NUBPL have been characterized by a consistent recognizable pattern of leukoencephalopathy affecting deep white matter including the corpus callosum and cerebellum.
View Article and Find Full Text PDFMitochondrial protein synthesis requires charging mt-tRNAs with their cognate amino acids by mitochondrial aminoacyl-tRNA synthetases, with the exception of glutaminyl mt-tRNA (mt-tRNA). mt-tRNA is indirectly charged by a transamidation reaction involving the GatCAB aminoacyl-tRNA amidotransferase complex. Defects involving the mitochondrial protein synthesis machinery cause a broad spectrum of disorders, with often fatal outcome.
View Article and Find Full Text PDFMutations in FARS2 are known to cause dysfunction of mitochondrial translation due to deficient aminoacylation of the mitochondrial phenylalanine tRNA. Here, we report three novel mutations in FARS2 found in two patients in a compound heterozygous state. The missense mutation c.
View Article and Find Full Text PDF